Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T14:46:36.701Z Has data issue: false hasContentIssue false

Stable splittings, spaces of representations and almost commuting elements in Lie groups

Published online by Cambridge University Press:  03 June 2010

ALEJANDRO ADEM
Affiliation:
Department of Mathematics, University of British Columbia, Vancouver BC V6T1Z2, Canada. e-mail: [email protected]
FREDERICK R. COHEN
Affiliation:
Department of Mathematics, University of Rochester, Rochester NY 14627, U.S.A. e-mail: [email protected]
JOSÉ MANUEL GÓMEZ
Affiliation:
Department of Mathematics, University of British Columbia, Vancouver BC V6T1Z2, Canada. e-mail: [email protected]

Abstract

In this paper the space of almost commuting elements in a Lie group is studied through a homotopical point of view. In particular a stable splitting after one suspension is derived for these spaces and their quotients under conjugation. A complete description for the stable factors appearing in this splitting is provided for compact connected Lie groups of rank one. By using symmetric products, the colimits Rep(ℤn, SU), Rep(ℤn, U) and Rep(ℤn, Sp) are explicitly described as finite products of Eilenberg–MacLane spaces.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Adem, A.Z/pZ actions on (Sn)k. Trans. Amer. Math. Soc. 300 (1987), no. 2, 791809.Google Scholar
[2]Adem, A., Bahri, A., Bendersky, M., Cohen, F. R. and Gitler, S.On decomposing suspensions of simplicial spaces. Bol. Soc. Mat. Mex. (3) 15 (2009), 91102.Google Scholar
[3]Adem, A. and Cohen, F. R.Commuting elements and spaces of homomorphisms. Math. Ann. 338 (2007), 587626. Erratum. Math. Ann. 347 (2010), 245–248.CrossRefGoogle Scholar
[4]Adem, A., Cohen, D. and Cohen, F. R.On Representations and K-theory of the Braid Groups. Math. Ann. 326 (2003), pp. 515542.CrossRefGoogle Scholar
[5]Adem, A., Cohen, F. R. and Gómez, J. M. Commuting elements in central products of special unitary groups. Arxiv:math/0905.2895 [math.AT].Google Scholar
[6]Adem, A., Cohen, F. R. and Torres–Giese, E. Commuting elements, simplicial spaces, and filtrations of classifying spaces. Arxiv:math/0901.0137 [math.AT].Google Scholar
[7]Adem, A., Ge, J., Pan, J. and Petrosyan, N.Compatible actions and cohomology of crystallographic groups. J. Algebra 320 (2008), no. 1, 341353.CrossRefGoogle Scholar
[8]Baird, T. J. Cohomology of the space of commuting n-tuples in a compact Lie group. Algebr. Geom. Topol. (2007), no. 7, 737–754.Google Scholar
[9]Baird, T., Jeffrey, L. and Selick, P. The space of commuting n-tuples in SU(2). Arxiv:math:0911.4953 [math.AT].Google Scholar
[10]Borel, A.Sous-groupes commtatifs et torsion des groups de Lie compactes. Tohoku Math. J. 13 (1962), 216240.Google Scholar
[11]Borel, A., Friedman, R. and Morgan, J. W.Almost commuting elements in compact Lie groups. Mem. Amer. Math. Soc. 157 (2002), no. 747.Google Scholar
[12]Bredon, G. E. Introduction to compact transformation groups. Pure Appl. Math. Vol. 46. (Academic Press, 1972).Google Scholar
[13]Crabb, M. C. Spaces of commuting elements in SU(2). Preprint.Google Scholar
[14]Dold, A. and Thom, R.Quasifaserungen und unendliche symmetrische Produkte. Ann. Math. (2) 67 (1958), 239281.CrossRefGoogle Scholar
[15]Goldman, W. M.Topological components of the space of representations. Invent Math. 93 (3) (1988), 557607.CrossRefGoogle Scholar
[16]Helgason, S. Differential geometry, Lie groups, and symmetric spaces. Graduate Studies in Mathematics (American Mathematical Society, 2001).CrossRefGoogle Scholar
[17]Hofmann, K. H. and Morris, S. A. The structure of compact groups. A primer for the student—a handbook for the expert. de Gruyter Studies in Mathematics, 25 (Walter de Gruyter & Co., 1998), xviii+835 pp.Google Scholar
[18]Macdonald, I. G.Symmetric products of an algebraic curve. Topology 1 (1962), 319343.CrossRefGoogle Scholar
[19]May, J. P. The Geometry of iterated loop spaces. Lecture Notes in Math. (Springer, 1972).CrossRefGoogle Scholar
[20]Murayama, M.On G-ANRs and their G-homotopy types. Osaka J. Math. 20 (1983), no. 3, 479512.Google Scholar
[21]Park, D. H. and Suh, D. Y.Equivariant semi-algebraic triangulations of real algebraic G-varieties. Kyushu J. Math. 50 (1996), no. 1, 179205.CrossRefGoogle Scholar
[22]Ramras, D. The stable moduli space of flat connections over a surface. ArXiv:0810.1784v3 [math.AT].Google Scholar
[23]Sjerve, D. and Torres–Giese, E.Fundamental groups of commuting elements in Lie groups. Bulletin London Math. Soc. 40 (1) (2008), 6576.Google Scholar
[24]Steenrod, N. E.A convenient category of topological spaces. Michigan Math. J. 14 (1967), 133152.CrossRefGoogle Scholar
[25]Steenrod, N. E.Cohomology operations, and obstructions to extending continuous functions. Adv. Math. 8 (1972), 371416.CrossRefGoogle Scholar