Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T19:22:04.346Z Has data issue: false hasContentIssue false

Some metrical theorems in Diophantine approximation. III

Published online by Cambridge University Press:  24 October 2008

J. W. S. Cassels
Affiliation:
Trinity CollegeCambridge

Extract

Let

be w sequences of differentiable functions defined in the ranges

where aj, bj may be − ∞, + ∞ respectively. For each j and each mn let

be monotonic and let there be a constant K independent of m, n, j, θj such that

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1950

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Drewes, A. ‘Diophantische Benaderingsproblemen.’ Dissertation, Amsterdam, 1945, especially Hoofstuk II, Stelling 2 (p. 19).Google Scholar
(2)Fowler, R. H.On the distribution of the sets of points (λn θ). Proc. London Math. Soc. (2), 14 (19141915), 189206.Google Scholar
(3)Khintchine, A.Ein Satz über Kettenbrüche mit arithmetischen Anwendungen. Math. Z. 18 (1923), 289306.CrossRefGoogle Scholar
(4)Khintchine, A.Ueber einem Satz der Wahrscheinlichkeitsrechnung. Fund. Math. 6 (1924), 920.CrossRefGoogle Scholar
(5)Koksma, J. F.Metrisches zur Theorie der Diophantischen Approximationen. Proc. K. Akad. Wet. Amsterdam, 39 (1936), 225–40.Google Scholar
(6)Weyl, H.Ueber die Gleichverteilung von Zahlen mod Eins. Math. Ann. 77 (19151916), 313–52.CrossRefGoogle Scholar