Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T07:25:46.091Z Has data issue: false hasContentIssue false

Simultaneous Diophantine approximation in the real, complex and p–adic fields.

Published online by Cambridge University Press:  10 May 2010

NATALIA BUDARINA
Affiliation:
Department of Mathematics, NUI Maynooth, Co Kildare, Ireland. e-mail: [email protected]
DETTA DICKINSON
Affiliation:
Department of Mathematics, NUI Maynooth, Co Kildare, Ireland. e-mail: [email protected]
VASILI BERNIK
Affiliation:
Department of Mathematics,Surganova 9, Minsk, Belarus.

Abstract

In this paper it is shown that if the volume sum ∑r = 1 Ψ(r) converges for a monotonic function Ψ then the set of points (x, z, w) ∈ ℝ × ℂ × ℚp which simultaneously satisfy the inequalities |P(x)| ≤ Hv1 Ψλ1(H), |P(z)| ≤ Hv2 Ψλ2(H) and |P(w)|pH−v3 Ψλ3(H) with v1 + 2v2 + v3 = n − 3 and λ1 + 2λ2 + λ3 = 1 for infinitely many integer polynomials P has measure zero.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Baker, A.On a theorem of Sprindzuk. Proc. Roy. Soc., London Ser. A 292 (1966), 92104.Google Scholar
[2]Beresnevich, V.On approximation of real numbers by real algebraic numbers. Acta Arith. 90 (1999), 97112.CrossRefGoogle Scholar
[3]Beresnevich, V., Bernik, V. and Kovalevskaya, E.On approximation of p-adic numbers by p-adic algebraic numbers. J. Number Theory 111 (2005), 3356.CrossRefGoogle Scholar
[4]Bernik, V.The metric theorem on the simultaneous approximation of zero by values of integral polynomials. Izv. Akad. Nauk SSSR, Ser. Mat. 44 (1980), 2445.Google Scholar
[5]Bernik, V.On the exact order of approximation of zero by values of integral polynomials. Acta Arith. 53 (1989), 1728.Google Scholar
[6]Bernik, V. and Kalosha, N.Approximation of zero by values of integral polynomials in space ℝ × ℂ × ℚp. Vesti NAN of Belarus. Ser. fiz-mat nauk 1 (2004), 121123.Google Scholar
[7]Bernik, V. and Vasilyev, D.A Khinchin-type theorem for integral-valued polynomials of a complex variable. Proc. IM NAN Belarus 3 (1999), 1020.Google Scholar
[8]Khintchine, A.Einige stze uber Kettenbrűche mit anwendungen auf die theorie der Diophantischen approximationen. Math. Ann. 92 (1924), 115125.CrossRefGoogle Scholar
[9]Kovalevskaya, E.On the exact order of approximation to zero by values of integral polynomials in ℚp. Prepr. Inst. Math. Nat. Acad. Sci. Belarus 8 (547), (Minsk, 1998).Google Scholar
[10]Mahler, K.Über das Mass der Menge aller S–Zahlen. Math. Ann. 106 (1932), 131139.CrossRefGoogle Scholar
[11]Sprindzuk, V.Mahler's problem in the metric theory of numbers. Transl. Math. Monogr. 25, (Amer. Math. Soc., 1969).Google Scholar
[12] F. eludevich. Simultane diophantishe Approximationen abhangiger Grössen in mehreren Metriken. Acta Arith. 46 (1986), 285296.CrossRefGoogle Scholar