Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Korolko, Anna
and
Silva Leite, Fatima
2011.
Kinematics for rolling a Lorentzian sphere.
p.
6522.
Jurdjevic, Velimir
2011.
Optimal control on Lie groups and integrable Hamiltonian systems.
Regular and Chaotic Dynamics,
Vol. 16,
Issue. 5,
p.
514.
Chitour, Yacine
and
Kokkonen, Petri
2012.
Rolling manifolds on space forms.
Annales de l'Institut Henri Poincaré C, Analyse non linéaire,
Vol. 29,
Issue. 6,
p.
927.
Crouch, Peter
and
Silva Leite, Fatima
2012.
Rolling motions of pseudo-orthogonal groups.
p.
7485.
Grong, Erlend
2012.
Controllability of Rolling without Twisting or Slipping in Higher Dimensions.
SIAM Journal on Control and Optimization,
Vol. 50,
Issue. 4,
p.
2462.
de León, Manuel
2012.
A historical review on nonholomic mechanics.
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas,
Vol. 106,
Issue. 1,
p.
191.
Biggs, R.
and
Remsing, C. C.
2014.
Cost-Extended Control Systems on Lie Groups.
Mediterranean Journal of Mathematics,
Vol. 11,
Issue. 1,
p.
193.
Godoy Molina, Mauricio
and
Grong, Erlend
2014.
Geometric conditions for the existence of a rolling without twisting or slipping.
Communications on Pure & Applied Analysis,
Vol. 13,
Issue. 1,
p.
435.
Chitour, Yacine
Molina, Mauricio Godoy
and
Kokkonen, Petri
2014.
Geometric Control Theory and Sub-Riemannian Geometry.
Vol. 5,
Issue. ,
p.
103.
Marques, André
and
Leite, Fátima Silva
2015.
CONTROLO’2014 – Proceedings of the 11th Portuguese Conference on Automatic Control.
Vol. 321,
Issue. ,
p.
3.
Leite, F. Silva
and
Louro, F.
2015.
Dynamics, Games and Science.
Vol. 1,
Issue. ,
p.
341.
Chitour, Yacine
Godoy Molina, Mauricio
and
Kokkonen, Petri
2015.
Symmetries of the rolling model.
Mathematische Zeitschrift,
Vol. 281,
Issue. 3-4,
p.
783.
Chitour, Y.
Godoy Molina, M.
and
Kokkonen, P.
2015.
On the Controllability of the Rolling Problem onto the Hyperbolic $n$-space.
SIAM Journal on Control and Optimization,
Vol. 53,
Issue. 2,
p.
948.
Grong, Erlend
2016.
Submersions, Hamiltonian Systems, and Optimal Solutions to the Rolling Manifolds Problem.
SIAM Journal on Control and Optimization,
Vol. 54,
Issue. 2,
p.
536.
Biggs, Rory
and
Remsing, Claudiu C.
2017.
Lie Groups, Differential Equations, and Geometry.
p.
127.
Jovanović, Božidar
2018.
Rolling balls over spheres in $ \newcommand{\m}{\mathfrak m} {\mathbb{R}^n}$.
Nonlinearity,
Vol. 31,
Issue. 9,
p.
4006.
Krakowski, Krzysztof A.
and
Matematyczno-Przyrodniczy, Wydzial
2018.
Controllability of Rolling Symmetric Spaces.
p.
7.
Krakowski, Krzysztof A.
Machado, Luís
and
Leite, Fátima Silva
2021.
A unifying approach for rolling symmetric spaces.
Journal of Geometric Mechanics,
Vol. 13,
Issue. 1,
p.
145.
Jurdjevic, Verlimir
2021.
CONTROLO 2020.
Vol. 695,
Issue. ,
p.
136.
Ardentov, Andrei
Bor, Gil
Le Donne, Enrico
Montgomery, Richard
and
Sachkov, Yuri
2021.
Bicycle paths, elasticae and sub-Riemannian geometry.
Nonlinearity,
Vol. 34,
Issue. 7,
p.
4661.