Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T14:34:54.287Z Has data issue: false hasContentIssue false

Real inequalities with applications to function theory

Published online by Cambridge University Press:  24 October 2008

W. K. Hayman
Affiliation:
University CollegeExeter
F. M. Stewart
Affiliation:
Brown UniversityProvidence, R.I.

Extract

Suppose that f(x) is non-negative for x ≥ 0 and let

In a recent paper (4) inequalities were proved relating fn(x) with the nth derivative f(n)(x) of f(x). However, the two main results, Theorems 3 and 4, were proved only for n = 1 and 2. In the first part of this paper we shall prove the corresponding results for all positive integral n under a slightly less restrictive hypothesis (Theorem 3). We shall then give an application showing that from the hypothesis f(x) ≤ μ(x) for all x it is sometimes possible to deduce f(n)(x) = O(n)(x)} for a set of values x depending only on μ(x).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1954

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Ahlfors, L. V.Zur Theorie der Überlagerungsflächen. Acta Math. 65 (1935), 157–94.CrossRefGoogle Scholar
(2)Dinghas, A.Zur Werteverteilung einer Klasse transzendenter Funktionen. Math. Z. 45 (1939), 507–10.CrossRefGoogle Scholar
(3)Dinghas, A.Zur Abschätzung der a-Stellen ganzer transzendenter Funktionen mit Hilfe der Shimizu-Ahlforsschen Charakteristik. Math. Ann. 120 (1949), 581–4.CrossRefGoogle Scholar
(4)Hayman, W. K.An inequality for real positive functions. Proc. Camb. phil. Soc. 48 (1952), 93105.CrossRefGoogle Scholar
(5)Hayman, W. K.The minimum modulus of large integral functions. Proc. Lond. math. Soc. (3), 2 (1952), 469512.CrossRefGoogle Scholar
(6)Nevanlinna, R.Eindeutige analytische Funktionen (Berlin, 1936).CrossRefGoogle Scholar
(7)Valiron, G.Lectures on the general theory of integral functions (New York, 1949).Google Scholar
(8)Wiman, A.Über den Zusammenhang zwischen dem Maximalbetrage einer analytischen Funktion und dem grössten Gleide der zugehörigen Taylorschen Reihe. Acta Math., Stockh., 37 (1914), 305–26.CrossRefGoogle Scholar