Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-20T04:32:32.792Z Has data issue: false hasContentIssue false

Random motion on a finite Abelian group

Published online by Cambridge University Press:  24 October 2008

I. J. Good
Affiliation:
131 Cheviot GardensLondon, N.W.2

Extract

1. The present paper is concerned with a class of finite Markoff chains. It is thought that there are some new points of interest here, although the literature dealing with finite Markoff chains is large. (For bibliographies see (2) and (7).)

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1951

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Feller, W.An introduction to probability theory and its applications, vol. 1 (NewYork, 1950).Google Scholar
(2)Fréchet, M.Recherches théoriques modernes sur la théorie des probabilités, livre 2 (Méthode des fonctions arbitraires. Théorie des événements en chaîne dans le cas d'un nombre fini d'états possibles) (Paris, 1938).Google Scholar
(3)Good, I. J.The number of individuals in a cascade process. Proc. Cambridge Phil. Soc. 45 (1949), 360–3.CrossRefGoogle Scholar
(4)Good, I. J.Probability and the weighing of evidence (London, 1950).Google Scholar
(5)Good, I. J.On the inversion of circulant matrices. Biometrika, 37 (1950), 185–6.CrossRefGoogle ScholarPubMed
(6)Hardy, G. H. and Wright, E. M.An introduction to the theory of numbers (Oxford, 1938).Google Scholar
(7)Hostinsky, B.Méthodes générales du calcul des probabilités (Paris, 1931).Google Scholar
(8)Jordan, Charles. Calculus of finite differences (2nd ed., New York, 1947).Google Scholar
(9)Nyström, E. J.Über die praktische Auflösung von Integralgleichungen mit Anwendung auf Randwertaufgaben. Acta Math. 54 (1930), 185204. (This and other related references are given in (10).)CrossRefGoogle Scholar
(10)Reiz, A.A quadrature formula of Christoffel. Math. tables and other aids to computation, 4 (1950), 181–5.CrossRefGoogle Scholar
(11)Titchmarsh, E. C.Introduction to the theory of Fourier integrals (Oxford, 1937).Google Scholar
(12)Uspensky, J. V.Introduction to mathematical probability (New York, 1937).Google Scholar
(13)Van der Waerden, B. L.Moderne Algebra (2nd ed., Berlin, 1937).CrossRefGoogle Scholar
(14)Weyl, H.Group theory and quantum mechanics (English translation, London, 1931).Google Scholar