No CrossRef data available.
A partition of non-synthesis for a quotient algebra of A(Z)
Published online by Cambridge University Press: 24 October 2008
Extract
Let A(Z) be the Banach algebra of Fourier-Lebesgue coefficients: a function f is an element of A(Z) if it is the Fourier transform
of some function fεL1(T), where T, as usual, denotes the circle group. We write
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 68 , Issue 3 , November 1970 , pp. 675 - 683
- Copyright
- Copyright © Cambridge Philosophical Society 1970
References
REFERENCES
(1)Drury, S. W.A partition of non-synthesis in tensor algebras. Proc. Cambridge Philos. Soc. 67 (1970), 19–21.CrossRefGoogle Scholar
(2)Kahane, J. P. Idempotents and closed subalgebras of A(Z). Symposium on Function Algebras. Tulane University (1965).Google Scholar
(3)Kahane, J. P.Algebres tensorielles et analyse harmonique. Siminaire Bourbaki (05 1965).Google Scholar
(6)Varopoulos, N. Th.Tensor algebras and harmonic analysis. Acta Math. 119 (1967), 51–112.CrossRefGoogle Scholar
(7)Varopoulos, N. Th.Tensor algebras over discrete spaces. J. Functional Analysis 3 (1969), 321–335.CrossRefGoogle Scholar