Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T13:33:27.769Z Has data issue: false hasContentIssue false

On the geometric structure of classical field theory in Lagrangian formulation

Published online by Cambridge University Press:  24 October 2008

Jędrzej Śniatycki
Affiliation:
Department of Applied Mathematics and Computing Science, The University of Sheffeld, Sheffeld‡

Abstract

Geometric structure of classical field theory in Lagrangian formulation is investigated. Symmetry transformations with generators depending on higher-order derivatives are considered and the corresponding conservation laws are obtained.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Lang, S.Introduction to differentiable manifolds (Interscience, New York, 1962).Google Scholar
(2)Abraham, R.Lectures of Smale on differential topology (mimeographed notes).Google Scholar
(3)Lepage, TH. H. J.Acad. Roy. Belg. Bull., Cl. Sci. V, Sér. 22 (1936), 716, 1034.Google Scholar
(4)De Donder, TH.Théorie invariantive du calcul des variations (nouvelle édit., Gauthier-Villars, Paris, 1935).Google Scholar
(5)Weyl, H.Ann. of Math. 36 (1935), 607.Google Scholar
(6)Funk, P.Variationsrechnung und ihre Anwendung in Physik und Technik (Springer, Berlin–Göttingen–Heidelberg, 1932), 410424.Google Scholar
(7)Noether, E.Nachr. Akad. Wiss. Göttingen Math.-Phys., Kl. II (1918), 235.Google Scholar
(8)Trautman, A.Comm. Math. Phys. 6 (1967), 248.CrossRefGoogle Scholar
(9)Komorowski, J.Studia Math. 29 (1968), 261.CrossRefGoogle Scholar
(10)Steudel, H. Z.Naturforsch. 21a (1966), 261.Google Scholar
(11)Komar, A.Phys. Rev. 164 (1967), 1595.Google Scholar
(12)García, P. L. and Pêrez-Rendón, A.Commun. Math. Phys. 13 (1969), 24.Google Scholar