No CrossRef data available.
On the continuity of the P.S.-function
Published online by Cambridge University Press: 24 October 2008
Extract
Let G be a locally compact, unimodular, topological group with μ Haar measure on G, and μ* the corresponding inner measure. If (G) denotes the Borel subsets of G of finite measure, and V(G) = {μ(E):E∈
(G)}, then the Product Set function, or P.S.-function, of the group G, written ΦG, is defined by
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 68 , Issue 2 , September 1970 , pp. 359 - 361
- Copyright
- Copyright © Cambridge Philosophical Society 1970
References
REFERENCES
(1)Henstock, R. and Macbeath, A. M.On the measure of sum-sets, 1. Proc. London Math. Soc. 3 (1953), 182–194.CrossRefGoogle Scholar
(2)Macbeath, A. M.On the measure of product sets in a topological group. J. London Math. Soc. 35 (1960), 403–407.CrossRefGoogle Scholar
(3)McCrudden, M.On product sets in a unimodular group. Proc. Cambridge Philos. Soc. 64 (1968), 1001–1007.CrossRefGoogle Scholar
(4)Weil, A.L'integration dans les groupes lopologiques et ses applications (Paris, 1953).Google Scholar