Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-30T19:35:46.795Z Has data issue: false hasContentIssue false

On systems of diagonal forms II

Published online by Cambridge University Press:  01 July 2009

MICHAEL P. KNAPP*
Affiliation:
Mathematical Sciences Department, Loyola College, 4501 North Charles Street, Baltimore, MD 21210-2699, U.S.A. e-mail: [email protected]

Abstract

Given a system of diagonal forms over ℚp, we ask how many variables are required to guarantee that the system has a nontrivial zero. We show that if the prime p satisfies p > (largest degree) − (smallest degree) + 1, then there is a bound on the sufficient number of variables which is a polynomial in the degrees of the forms.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Alon, N.Combinatorial Nullstellensatz. Combin. Probab. Comput. 8 (1999), 729.CrossRefGoogle Scholar
[2]Ax, J. and Kochen, S.Diophantine problems over local fields I. Amer. J. Math. 87 (1965), 605630.CrossRefGoogle Scholar
[3]Browkin, J.On zeros of forms. Bull. Acad. Polon. Sci. S'er. Sci. Math. Astronom. Phys. 17 (1969), 611616.Google Scholar
[4]Brüdern, J. and Godinho, H.On Artin's conjecture, I: systems of diagonal forms. Bull. London Math. Soc. 31 (1999), 305313.CrossRefGoogle Scholar
[5]Davenport, H. and Lewis, D. J.Simultaneous equations of additive type. Philos. Trans. Roy. Soc. London Ser. A. 264 (1969), 557595.Google Scholar
[6]Knapp, M.Systems of diagonal equations over p-adic fields. J. London Math. Soc. (2) 63 (2001), 257267.CrossRefGoogle Scholar
[7]Knapp, M.Diagonal equations of different degrees over p-adic fields. Acta Arith. 126.2 (2007), 139154.CrossRefGoogle Scholar
[8]Knapp, M.On systems of diagonal forms. J. Aust. Math. Soc. 82 (2007), 221236.Google Scholar
[9]Lewis, D. J. and Montgomery, H. L.On zeros of p-adic forms. Michigan Math J. 30 (1983), 8387.Google Scholar
[10]Low, L., Pitman, J. and Wolff, A.Simultaneous diagonal congruences. J. Number Theory 29 (1988), 3159.CrossRefGoogle Scholar
[11]Schanuel, S. H.An extension of Chevalley's theorem to congruences modulo prime powers. J. Number Theory 6 (1974), 284290.Google Scholar
[12]Wooley, T. D.On simultaneous additive equations I. Proc. London Math. Soc. (3) 63 (1991), 134.CrossRefGoogle Scholar