No CrossRef data available.
On some theorems of Hurwitz and Sheil-Small
Published online by Cambridge University Press: 24 October 2008
Extract
We recall a theorem of Hurwitz [5]: let f(θ) be real-valued and periodic, f(θ) ≢ 0, and
where an = bn = 0, 0 ≤ n < N. Then f(θ) has at least 2N sign changes in each period. A similar result with a trigonometric polynomial on the right-hand side of (1) had been obtained earlier by Sturm [7].
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 100 , Issue 2 , September 1986 , pp. 365 - 370
- Copyright
- Copyright © Cambridge Philosophical Society 1986
References
REFERENCES
[1] Anderson, J. M., Barth, K. F. and Brannan, D. A.. Research problems in complex analysis. Bull. London Math. Soc. 9 (1977), 129–162.Google Scholar
[2] Hall, R. R.. On a conjecture of Shapiro about trigonometric series. J. London Math. Soc. (2) 25 (1982), 407–415.Google Scholar
[3] Hall, R. R.. On an inequality of E. Heinz. J. Analyse Math. 42 (1982/1983), 185–198.Google Scholar
[4] Hall, R. R.. On a class of isoperimetric inequalities. J. Analyse Math. (to appear).Google Scholar
[5] Hurwitz, A.. Uber die Fourierschen Konstanten integrierbarer Funktionen. Mathematische Annalen 57 (1903), 425–446.Google Scholar
[6] Sheil-Small, T.. On the Fourier Series of a finitely described convex curve and a conjecture of H. S. Shapiro. Math. Proc. Cambridge Philos. Soc. 98 (1985), 513–527.Google Scholar
[7] Sturm, C.. Sur les équations différentielles lineaires du second ordre. J. de math. pures et appliquées, (1) 1 (1836), 106–186.Google Scholar
[8] Ullman, J. L. and Titus, C. J.. An integral inequality with applications to harmonic mappings. Michigan Math. J. 10 (1963), 181–192.Google Scholar