No CrossRef data available.
A new generating function for Jacobi polynomials
Published online by Cambridge University Press: 24 October 2008
Extract
In an earner paper ((6), p. 209) the author has given a generating function for the Jacobi polynomials defined by ((5), p. 254)
In the present note we obtain another generating function for these polynomials. The results given earlier by Manocha and Sharma ((4), p. 432) in these proceedings and Brafman in (2) follow as a particular case of our result.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 66 , Issue 2 , September 1969 , pp. 345 - 347
- Copyright
- Copyright © Cambridge Philosophical Society 1969
References
REFERENCES
(1)Appell, P. and Kampé de Fériet, J.Fonctions hypergéométriques et hyperaphériques polynomes d' Hermiie (Gauthier-Villars; Paris, 1926).Google Scholar
(2)Brafman, F.Generating function of Jacobi and related polynomials. Proc. Amer. Math. Soc. 2 (1951), 942–949.Google Scholar
(3)Byrchnall, J. L.Differential equations associated with hypergeometric functions. Quart. J. Math. Oxford 13 (1942), 90–106.CrossRefGoogle Scholar
(4)Manocha, H. L. and Sharma, B. L.Generating functions of Jacobi polynomials. Proc. Cambridge Philos. Soc. 63 (1967), 431–433.CrossRefGoogle Scholar
(6)Saxena, R. K.A generating function for Jacobi polynomials. Canad. Math. Bull. 9 (1966), 209–214.CrossRefGoogle Scholar