Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T14:53:27.424Z Has data issue: false hasContentIssue false

M-embedded symmetric operator spaces and the derivation problem

Published online by Cambridge University Press:  20 August 2019

JINGHAO HUANG
Affiliation:
School of Mathematics and Statistics, University of New South Wales, Kensington, 2052, NSW, Australia. e-mails: [email protected], [email protected], [email protected]
GALINA LEVITINA
Affiliation:
School of Mathematics and Statistics, University of New South Wales, Kensington, 2052, NSW, Australia. e-mails: [email protected], [email protected], [email protected]
FEDOR SUKOCHEV
Affiliation:
School of Mathematics and Statistics, University of New South Wales, Kensington, 2052, NSW, Australia. e-mails: [email protected], [email protected], [email protected]

Abstract

Let ℳ be a semifinite von Neumann algebra with a faithful semifinite normal trace τ. Assume that E(0, ∞) is an M-embedded fully symmetric function space having order continuous norm and is not a superset of the set of all bounded vanishing functions on (0, ∞). In this paper, we prove that the corresponding operator space E(ℳ, τ) is also M-embedded. It extends earlier results by Werner [48, Proposition 4∙1] from the particular case of symmetric ideals of bounded operators on a separable Hilbert space to the case of symmetric spaces (consisting of possibly unbounded operators) on an arbitrary semifinite von Neumann algebra. Several applications are given, e.g., the derivation problem for noncommutative Lorentz spaces ℒp,1(ℳ, τ), 1 < p < ∞, has a positive answer.

Type
Research Article
Copyright
© Cambridge Philosophical Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alfsen, E. and Effros, E.. Structure in real Banach spaces. Part I and Part II. Ann. of Math. 96 (1972), 98173.CrossRefGoogle Scholar
Bader, U., Gelander, T. and Monod, N.. A fixed point theorem for L 1 spaces. Invent. Math. 189 (2012), 143148.CrossRefGoogle Scholar
Blackadar, B.. Operator Algebra: Theory of C*-Algebras and von Neumann Algebras (Springer-Verlag, Berlin Heidelberg, 2006).CrossRefGoogle Scholar
Bennett, C. and Sharpley, R.. Interpolation of operators (Academic Press, Boston, 1988).Google Scholar
Ber, A., Chilin, V. and Levitina, G.. Derivations with values in quasinormable bimodules of locally measurable operators. Math. Tr. 17 (1) (2014), 318 (in Russian).Google Scholar
Ber, A., Chilin, V. and Sukochev, F.. Continuity of derivations of algebras of locally measurable operators. Integr. Equ. Oper. Theory 75 (2013), 527557.CrossRefGoogle Scholar
Ber, A., Chilin, V. and Sukochev, F.. Continuous derivations on algebras of locally measurable operators are inner. Proc. London Math. Soc. 109 (1) (2014), 6589.CrossRefGoogle Scholar
Ber, A., Huang, J., Levitina, G. and Sukochev, F.. Derivations with values in ideals of semifinite von Neumann algebras. J. Funct. Anal. 272 (2017), 49844997.CrossRefGoogle Scholar
Ber, A., Huang, J., Levitina, G. and Sukochev, F.. Derivations with values in τ-compact ideal of a semifinite von Neumann algebra. submitted manuscription.Google Scholar
Ber, A. and Sukochev, F.. Derivations in the Banach ideals of τ-compact operators. arxiv:1204.4052v1, 12pp.Google Scholar
Ber, A. and Sukochev, F.. Commutator estimates in W*-factors. Trans. Amer. Math. Soc. 364 (10) (2012), 55715587.CrossRefGoogle Scholar
Ber, A. and Sukochev, F.. Commutator estimates in W*-algebras. J. Funct. Anal. 262 (2) (2012), 537568.CrossRefGoogle Scholar
Braverman, M. and Makler, A.. The Hardy–Littlewood property for symmetric spaces. Sibirsk. Mat. Zh. 18 (1977), 522540.Google Scholar
Chilin, V. and Sukochev, F.. Weak convergence in non-commutative symmetric spaces. J. Operator Theory 31 (1994), 3565.Google Scholar
Cwikel, M.. The dual of weak Lp. Ann. Inst. Fourier, Grenoble 25 (1975), 81126.CrossRefGoogle Scholar
Davidson, K.. Nest Algebras (Longman Scientific & Technical, Harlow, 1988).Google Scholar
Dixmier, J.. Les Algebres d’Operateurs dans l’Espace Hilbertien. 2nd ed. (Gauthier-Vallars, Paris, 1969).Google Scholar
Dodds, P., Dodds, T. and De Pagter, B.. Noncommutative Köthe duality. Trans. Amer. Math. Soc. 339 (2) (1993), 717750.Google Scholar
Dodds, P. and De Pagter, B.. Normed Köthe spaces: A non-commutative viewpoint. Indag. Math. 25 (2014), 206249.CrossRefGoogle Scholar
Dodds, P., De Pagter, B. and Sukochev, F.. Sets of uniformly absolutely continuous norm in symmetric spaces of measurable operators. Trans. Amer. Math. Soc. 368 (6) (2016), 43154355.CrossRefGoogle Scholar
Dodds, P., De Pagter, B. and Sukochev, F.. Theory of noncommutative integration. to appear.Google Scholar
Fack, T. and Kosaki, H.. Generalised s-numbers of τ-measurable operators. Pacific J. Math. 123 (2) (1986), 269300.CrossRefGoogle Scholar
Harmand, P., Werner, D. and Werner, W.. M-ideals in Banach Spaces and Banach Algebras (Springer-Verlag, Berlin/New York, 1993)CrossRefGoogle Scholar
Hoover, T.. Derivations, homomorphisms, and operator ideals. Proc. Amer. Math. Soc. 62 (2) (1977), 293298.CrossRefGoogle Scholar
Johnson, B.. Cohomology in Banach algebras. Mem. Amer. Math. Soc. Vol. 127, American Mathematical Society (Providence, RI, 1972).Google Scholar
Johnson, B. and Parrott, S.. Operators commuting with a von Neumann algebras modulo the set of compact oeprators. J. Funct. Anal. 11 (1972), 3961.CrossRefGoogle Scholar
Kadison, R. and Ringrose, J.. Fundamentals of the Theory of Operator Algebras I (Academic Press, Orlando, 1983).Google Scholar
Kadison, R. and Ringrose, J.. Fundamentals of the Theory of Operator Algebras II (Academic Press, Orlando, 1986).Google Scholar
Kaftal, V. and Weiss, G.. Compact derivations relative to semifinite von Neumann algebras. J. Funct. Anal. 62 (1985), 202220.CrossRefGoogle Scholar
Kalton, N. and Sukochev, F.. Symmetric norms and spaces of operators. J. Reine Angew. Math. 621 (2008), 81121.Google Scholar
KamińSka, A. and Lee, H.. M-ideal properties in Marcinkiewicz spaces. Comment. Math. Prace Mat. Tomus specialis in Honorem Juliani Musielak (2004), 123144.Google Scholar
Krein, Yu. Petunin, S. and Semenov, E.. Interpolation of linear operators. Translated from the Russian by J. Szũcs. Translations of Mathematical Monographs, 54. American Mathematical Society (Providence, R.I., 1982).Google Scholar
Lord, S., Sukochev, F. and Zanin, D.. Singular traces: Theory and applications. De Gruyter Studies in Mathematical Physics 46 (De Gruyter, Berlin, 2013).Google Scholar
Lotz, H.. Weak* convergence in the dual of weak L p. Israel J. Math. 178 (2010), 209220.CrossRefGoogle Scholar
Nelson, E.. Notes on non-commutative integration. J. Funct. Anal. 15 (1974), 103116.CrossRefGoogle Scholar
De Pagter, B. and Sukochev, F.. Commutator estimates and ℝ-flows in non-commutative operator spaces. Proc. Edinburgh Math. Soc. 50 (2007), 293324.CrossRefGoogle Scholar
Pfitzner, H.. L-embedded Banach spaces and measure topology. Israel J. Math. 205 (2015), 421451.CrossRefGoogle Scholar
Popa, S.. The commutant modulo the set of compact oeprators of a von Neumann algebra. J. Funct. Anal. 71 (1987), 393408.CrossRefGoogle Scholar
Popa, S. and Rădulescu, F.. Derivations of von Neumann algebras into the compact ideal space of a semifinite algebra. Duke Math. J. 57 (2) (1988), 485518.CrossRefGoogle Scholar
Ringrose, J.. Automatic continuity of derivations of operator algebras. J. London Math. Soc. 5 (1972), 432438.CrossRefGoogle Scholar
SchmÜdgen, K.. Unbounded self-adjoint operators on Hilbert space. Graduate Texts in Mathematics, vol 265 (Springer, Dordrecht, 2012).CrossRefGoogle Scholar
Segal, I.. A non-commutative extension of abstract integration. Ann. Math. 57 (1953), 401457.CrossRefGoogle Scholar
Semenov, E. and Sukochev, F.. Sums and intersections of symmetric operator spaces. J. Math. Anal. Appl. 414 (2014), 742755.CrossRefGoogle Scholar
Sukochev, F. and Zanin, D.. Orbits in symmetric spaces. J. Funct. Anal. 257 (2009) 194218.CrossRefGoogle Scholar
Takesaki, M.. Theory of Operator Algebras I (Springer-Verlag, New York, 1979).CrossRefGoogle Scholar
Takesaki, M.. Theory of Operator Algebras II (Springer-Verlag, Berlin-Heidelberg-New York, 2003).CrossRefGoogle Scholar
Weigt, M.. Derivations of τ-measurable operators. In Operator Theory: Advances and Applications. Vol. 195, 273286 (Birkhauser Verlag, Basel, 2009).CrossRefGoogle Scholar
Werner, D.. New classes of Banach spaces which are M-ideals in their biduals. Math. Proc. Camb. Phil. Soc. 111 (1992), 337354.CrossRefGoogle Scholar