Published online by Cambridge University Press: 08 March 2022
Let K be any field of characteristic two and let
$U_1$
and
$W_1$
be the Lie algebras of the derivations of the algebra of Laurent polynomials
$K[t,t^{-1}]$
and of the polynomial ring K[t], respectively. The algebras
$U_1$
and
$W_1$
are equipped with natural
$\mathbb{Z}$
-gradings. In this paper, we provide bases for the graded identities of
$U_1$
and
$W_1$
, and we prove that they do not admit any finite basis.
Supported by FAPESP grant No. 2019/12498-0.
Partially supported by FAPESP grant No. 2018/23690-6 and by CNPq grant No. 302238/2019-0.