Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-16T22:23:28.220Z Has data issue: false hasContentIssue false

Lattice bounding, Radonifying and summing mappings

Published online by Cambridge University Press:  24 October 2008

D. J. H. Garling
Affiliation:
St John's College, Cambridge

Extract

There are several known results concerning Radonifying and summing properties of linear mappings in terms of their transposed operators. Thus Schwartz has shown that a sufficient condition for a mapping to be p-Radonifying is that its transposed mapping should be p-decomposing, and that this condition is also necessary if the image space has good topological properties. But as Schwartz observes, these properties are seldom observed by biduals of Banach spaces with their weak-topologies, which arise when 0 ≤ p ≤ 1. This suggests that it would be worth looking for a weaker condition than ‘p-decomposing’.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Bourbaki, N.Intégration, Chaps. I–IV (Paris, 1952).Google Scholar
(2)Bretagnolle, J. and Dacunha-Castelle, D.Application de l'étude de certaines formes linéaires aléatoires au plongement d'espaces de Banach dans des espaces Lp. Ann. Sci. École Norm. Sup. 4˚ série 2 (1969), 437480.CrossRefGoogle Scholar
(3)Chevet, S.Une propriété caractéristique des processus linéaires continus et applications aux opérateurs p-radonifiants. C.R. Acad. Sci. Paris 273 (1971), 12611264.Google Scholar
(4)Frenlin, D. H., Garling, D. J. H. and Haydon, R. G.Bounded measures on topological spaces. Proc. London Math. Soc. (3) 25 (1972), 115136.CrossRefGoogle Scholar
(5)Garling, D. J. H.Diagonal mappings between sequence spaces (to appear in Studia Math. 51).Google Scholar
(6)Kwapień, S.On a theorem of L. Schwartz and its applications to absolutely summing operators. Studia Math. 38 (1970), 193201.CrossRefGoogle Scholar
(7)Nielsen, N. J.On Banach ideals determined by Banach lattices and theirapplications. Diasertationea Math. Rozprawy Mat. 109 (1973).Google Scholar
(8)Persson, A.On some properties of p-nuclear and p-integral operators. Studia Math. 33 (1969), 213222.CrossRefGoogle Scholar
(9)Pietsch, A.Absolut p-summierende Abbildungen in normierten Räumen. Studia Math. 28 (1967), 333353.CrossRefGoogle Scholar
(10)Saphar, P.Applications p-décomposantes et p-absolument sommantes. Israel J. Math. 11 (1972), 164179.CrossRefGoogle Scholar
(11)Schwartz, L.Applications p-radonifiantea, Séminaire de l'École Polytechnique, Paris, 1969–70.Google Scholar
(12)Schwaxtz, L.Probabilités cylindriques et applications p-radonifiantes, J. Fac. Sci. Univ. Tokyo Sect. 1 A Math. 18 (1971), 139286.Google Scholar
(13)Smons, S.If É has the metric approximation property, then so does (E, É), Math. Ann. 203 (1973), 910.CrossRefGoogle Scholar