Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T07:31:02.252Z Has data issue: false hasContentIssue false

Infinite loop spaces with trivial Dyer-Lashof operations

Published online by Cambridge University Press:  24 October 2008

Michael Slack
Affiliation:
Department of Mathematics, University of Virginia, Charlottesville, VA 22903, U.S.A.

Abstract

Let p be any prime. It is well known that the modp Dyer-Lashof algebra acts trivially on the mod p homology of an Eilenberg-MacLane space. The main result of this paper is a converse of this fact. Specifically, it is shown that any connected infinite loop space with trivial action of the mod p Dyer-Lashof algebra is (localized at p) homotopy equivalent to a product of Eilenberg-MacLane spaces. It is then shown that this equivalence does not necessarily respect the infinite loop structures involved.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Araki, S. and Kuno, T.. Topology of Hn-spaces and Hn-squaring operations. Mem. Fac. Sci. Kyushu Univ. Ser. A 10 (1956), 85120.Google Scholar
[2]Boardman, J. M. and Vogt, R.. Homotopy everything H-spaces. Bull. Amer. Math. Soc. 74 (1968), 11171122.CrossRefGoogle Scholar
[3]Clark, A.. Homotopy commutativity and the Moore spectral sequence. Pacific J. Math. 15 (1965), 6574.Google Scholar
[4]Cohen, F. R., Lada, T. J. and May, J. P.. The Homology of iterated Loop Spaces. Lecture Notes in Math. vol. 533 (Springer-Verlag, 1976).Google Scholar
[5]Dyer, E. and Lashof, R.. Homology of iterated loop spaces. Amer. J. Math. 84 (1962), 3588.CrossRefGoogle Scholar
[6]Dold, A. and Thom, R.. Quasifaserungen and unendliche symmetrische Produckte. Ann. of Math. 67 (1958), 239281.Google Scholar
[7]Kane, R.. On loop spaces without p-torsion. Pacific J. Math. 60 (1975), 189201.Google Scholar
[8]Kane, R.. Implications in Morava K-theory. Memoirs Amer. Math. Soc. no. 340 (American Mathematical Society, 1986).CrossRefGoogle Scholar
[9]Kraines, D. and Lada, T.. The Miller spectral sequence. Preprint.Google Scholar
[10]Kraines, D. and Schochet, C.. Differentials in the Eilenberg-Moore spectral sequence. J. Pure Appi. Algebra 2 (1972), 131148.CrossRefGoogle Scholar
[11]Kuhn, N. J., Slack, M. and Williams, F.. The Hopf construction for iterated ioop spaces. In preparation.Google Scholar
[12]May, J. P.. The Geometry of Iterated Loop Spaces. Lecture Notes in Math. vol. 271 (Springer-Verlag, 1972).Google Scholar
[13]Milgram, R. J.. Iterated loop spaces. Ann. of Math. 84 (1966), 386403.Google Scholar
[14]Milgram, R. J.. The bar construction and abelian H-spaces. Illinois J. Math. 11 (1967), 242250.Google Scholar
[15]Miller, H. R.. A spectral sequence for the homology of an infinite delooping. Pacific J. Math. 79 (1978), 139155.CrossRefGoogle Scholar
[16]Milnor, J. and Moore, J. C.. On the structure of Hopf algebras. Ann. of Math. 81 (1965), 211264.CrossRefGoogle Scholar
[17]Nishida, G.. Cohomology operations in iterated loop spaces. Proc. Japan Acad. Ser. A Math. Sci. 44 (1968), 104109.Google Scholar
[18]Slack, M.. Maps between iterated loop spaces. J. Pure Appl. Algebra 73 (1991), 181201.Google Scholar
[19]Smith, L.. The cohomology of stable two stage Postnikov systems. Illinois J.Math. 11 (1967), 310329.Google Scholar
[20]Stasheff, J.. Homotopy associativity of H-spaces, I, II. Trans. Amer. Math. Soc. 108 (1963), 275312.Google Scholar