Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T08:38:48.070Z Has data issue: false hasContentIssue false

Homeomorphisms of finite distortion: discrete length of radial images

Published online by Cambridge University Press:  01 January 2008

PEKKA KOSKELA
Affiliation:
University of Jyväskylä, Department of Mathematics and Statistics, P.O. Box 35, FIN-40014 Jyväskylä, Finland. e-mail: [email protected], [email protected]
TOMI NIEMINEN
Affiliation:
University of Jyväskylä, Department of Mathematics and Statistics, P.O. Box 35, FIN-40014 Jyväskylä, Finland. e-mail: [email protected], [email protected]

Abstract

We study homeomorphisms of finite exponentially integrable distortion of the unit ball Bn onto a domain Ω of finite volume. We show that under such a mapping the images of almost all radii (in terms of a gauge dimension) have finite discrete length. We also show that our dimension estimate is essentially sharp.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Astala, K., Iwaniec, T., Koskela, P. and Martin, G.. Mappings of BMO-bounded distortion. Math. Ann 317 (2000), 703726.CrossRefGoogle Scholar
[2]Beurling, A.. Ensembles exceptionnels. Acta Math 72 (1940), 113.CrossRefGoogle Scholar
[3]Bishop, C. J.. Boundary interpolation sets for conformal maps. To appear in Bull. London Math. Soc.Google Scholar
[4]Bonk, M., Koskela, P. and Rohde, S.. Conformal metrics on the unit ball in euclidean space. Proc. London Math. Soc. (3) 77 (1998), 635664.CrossRefGoogle Scholar
[5]Faraco, D., Koskela, P. and Zhong, X.. Mappings of finite distortion: the degree of regularity. Adv. Math 190 (2005), no. 2, 300318.CrossRefGoogle Scholar
[6]Herron, D. and Koskela, P.. Mappings of finite distortion: Gauge dimension of generalized quasicircles. Illinois J. Math 47 no: 4 (2003), 12431259.CrossRefGoogle Scholar
[7]Heinonen, J. and Rohde, S.. The Gehring–Hayman inequality for quasihyperbolic geodesics. Math. Proc. Camb. Phil. Soc 114 (1993), 393405.CrossRefGoogle Scholar
[8]Iwaniec, T., Koskela, P. and Onninen, J.. Mappings of finite distortion: Monotonicity and continuity. Invent. Math 144 (2001), 507531.CrossRefGoogle Scholar
[9]Iwaniec, T. and Martin, G.. Geometric function theory and non-linear analysis. Oxford Mathematical Monographs (The Clarendon Press, Oxford University Press, 2001).Google Scholar
[10]Kauhanen, J., Koskela, P. and Maly, J.. Mappings of finite distortion: Discreteness and openness. Arch. Rational Mech. Anal 160 (2001), 135151.CrossRefGoogle Scholar
[11]Kauhanen, J., Koskela, P. and Maly, J.. Mappings of finite distortion: Condition N. Michigan Math. J 49 (2001), no. 1, 169181.CrossRefGoogle Scholar
[12]Koskela, P. and Maly, J.. Mappings of finite distortion: the zero set of the Jacobian. J. Eur. Math. Soc. (JEMS) 5 (2003), 95105.Google Scholar
[13]Kovalev, L. V. and Onninen, J.. Boundary values of mappings of finite distortion. Future trends in geometric function theory. (Rep. Univ. Jyväskylä Dep. Math. Stat., 92) 175–182. University Jyväskylä (2003).Google Scholar
[14]Mattila, P.. Geometry of Sets and Measures in Euclidean Spaces (Cambridge University Press, 1995).CrossRefGoogle Scholar
[15]Martio, O., Ryazanov, V., U. Srebro and E. Yakubov. On Q-homeomorphisms. Ann. Acad. Sci. Fenn. Math 30 (2005), no. 1, 4969.Google Scholar
[16]Rogers, C. A.. Hausdorff Measures (Cambridge University Press, 1970).Google Scholar
[17]Ryazanov, V., Srebro, U. and Yakubov, E.. BMO-quasiconformal mappings. J. Anal. Math 83 (2001), 120.CrossRefGoogle Scholar