Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T00:12:54.998Z Has data issue: false hasContentIssue false

Geometric characterization of linearisable second-order differential equations

Published online by Cambridge University Press:  24 October 2008

Eduardo Martínez
Affiliation:
Departamento de Matemática Aplicada, Universidad de Zaragoza, E-50015 Zaragoza, Spain
José F. Cariñena
Affiliation:
Departamento de Física Teórica, Universidad de Zaragoza E-50009 Zaragoza, Spain

Abstract

Given an Ehresmann connection on the tangent bundle τ: TMM we define a linear connection on the pull-back bundle τ*(TM). With the aid of this tool, necessary and sufficient conditions are derived for the existence of local coordinates in which a system of second-order differential equations is linear.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Chern, S. S.Sur la géométrie d'un système d'équations différentielles du second ordre. Bull. Sei. Math. 63 (1939), 206.Google Scholar
[2]Crampin, M.On horizontal distributions on the tangent bundle of a differentiable manifold. J. London Math. Soc. 3 (1971), 178.Google Scholar
[3]Grifone, J.Structure presque-tangente et connexions I. Ann. Inst. Fourier 22(1) (1972), 287.Google Scholar
[4]Grimsson, C., Thompson, G. and Wilkens, G.Linearisation of second-order ordinary differential equations via Cartan's equivalence method. J. Diff. Equations 77 (1989) 1.Google Scholar
[5]Kamran, N. An introduction to the equivalence problem of Elie Cartan illustrated by examples; In Symmetries and nonlinear phenomena, eds. Levi, D. and Winternitz, P. (World Scientific, 1988), p. 99.Google Scholar
[6]Kobayasi, S. and Nomizu, I.Foundations of differential geometry (Wiley, 1963).Google Scholar
[7]Martínez, E. Geometría de ecuaciones diferenciales aplicada a la Mecánica, Ph.D. thesis (Publicaciones del Seminario García Galdeano, sec. 2, n. 36, 1991).Google Scholar
[8]Martínez, E., Cariñena, J. E. and Sarlet, W.Derivations of differential forms along the tangent bundle projection. Differential Geometry and its Applications 2 (1992), 17.Google Scholar
[9]Martínez, E., Cariñena, J. F. and Sarlet, W.Derivations of differential forms along the tangent bundle projection. Part II. Differential Geometry and its Applications 3 (1993), 1.CrossRefGoogle Scholar
[10]Martínez, E., Cariñena, J. F. and Sarlet, W.Geometric characterization of separable second-order differential equations. Math. Proc. Camb. Phil. Soc 113 (1993), 205.CrossRefGoogle Scholar
[11]Poor, W. A.Differential geometric structures (McGraw-Hill, 1981).Google Scholar
[12]Sarlet, W., Mahomed, F. M. and Leach, P. G. L.Symmetries of nonlinear equations and linearisation, J. Phys. A: Math. Gen. 20 (1987), 277.Google Scholar
[13]Thompson, G.Second-order equation fields and the inverse problem of Lagrangian dynamics. J. Math. Phys. 28 (1987), 2851.CrossRefGoogle Scholar