Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T07:38:15.898Z Has data issue: false hasContentIssue false

General relativity from gauge invariance

Published online by Cambridge University Press:  24 October 2008

Eric A. Lord
Affiliation:
Department of Theoretical Physics, University of Durham

Abstract

The free field equations for particles with spin are invariant under a group SL(2, c) whose transformations correspond to changes of representation of the twocomponent spinor algebra. The generalization of the equations which extends this invariance to a guage invariance in the Yang–Mills sense necessitates the introduction of auxiliary fields (which are also necessary to maintain Lorentz covariance). These fields can be interpreted as the potentials of a spin-2 field, just as the auxiliary fields for the charge gauge group are the potentials of a spin-l field (electromagnetism); this spin-2 field is then self-interacting. The Bargmann–Wigner formulation of the linear spin-2 field, when modified by the proposed self-interaction, yields a non-linear theory of a spin-2 field which is shown to be identical with Einstein's gravitational theory. With this interpretation the auxiliary fields take on an extra role of Yang–Mills field for the general coordinate transformation group – that is, they are the components of the affine connexion.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Winger, E. P.Ann. of Math. 40, (1939), 149Google Scholar
Bargmann, V. and Winger, E. P.Proc. Nat. Acad. Sci. U.S.A. 34 (1946), 211.CrossRefGoogle Scholar
(2)Dirac, P. A. M.Proc. Roy. Soc. A 155 (1937), 447Google Scholar
Fierz, M. and PAula, W.Proc. Roy. Soc. A 173 (1939), 211.Google Scholar
(3)Duffin, R. J.Phys. Rev. 54 (1938), 1114CrossRefGoogle Scholar
Kemmer, N.Proc. Roy. Soc. A 73, (1939), 91.Google Scholar
(4)Harish-Chandra, . Proc. Roy. Soc. Ser. A 186 (1946), 502Google Scholar
Phys. Rev. 71 (1947), 793CrossRefGoogle Scholar
Bhabha, J. J.Rev. Modern Phys. 21 (1949), 451.CrossRefGoogle Scholar
(5)Rarita, W. and Schwinger, J.Phys. Rev. 60 (1941), 61.CrossRefGoogle Scholar
(6)de Broglie, L.. Théorie générale des particules à spin (Paris, 1943).Google Scholar
(7)Nelson, T. J. and Good, R. H.Phys. Rev. 179, No. 5 (1969), 1145.CrossRefGoogle Scholar
(8)Bade, W. L. and Jehle, H.Rev. Modern Phys. 25 (1953), 714.CrossRefGoogle Scholar
(9)HamiltonSir, W. R.Elements of quaternions (London; Longmans, 1866).Google Scholar
(10)Pauli, W. Z.Physik 43 (1927), 601.CrossRefGoogle Scholar
(11)Rastall, P.Rev. Modern Phys. 36 (1964), 820.CrossRefGoogle Scholar
(12)Kramers, H. A., Belinfante, F. J. and Lubanski, J. K.Physica, 8 (1941), 597.CrossRefGoogle Scholar
(13)Green, H. S.Proc. Cambridge Phil. Soc. 45 (1948), 263.CrossRefGoogle Scholar
(14)Lee, T. D. and Yang, C. N.Phys. Rev. 105 (1957), 1671.CrossRefGoogle Scholar
(15)Einstein, A.S.B. Preuss. Acad. Wiss. (1916), 688.Google Scholar
(16)Yang, C. N. and Mills, H.Phys. Rev. 96 (1954), 191.CrossRefGoogle Scholar
(17)Utiyama, T.Phys. Rev. 101 (1956), 1597.CrossRefGoogle Scholar
(18)Kibble, T. W. B.J. Mathematical Phys. 2 (1961), 212.CrossRefGoogle Scholar
(19)Kibble, T. W. B. and Guralnik, S.Phys. Rev. 139 (1965), B 712.Google Scholar
(20)Anderson, J. L.Principles of relativity physics (Academic Press, 1967).CrossRefGoogle Scholar
(21)Weyl, H.Proc. Nat. Acad. Sci., U.S.A. 15 (1929), 323.CrossRefGoogle Scholar
(22)Sciama, D. W.Recent developments in general relativity p. 415 (Pergamon, 1963).Google Scholar