Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T14:31:49.016Z Has data issue: false hasContentIssue false

Fourier coefficients of Eisenstein series on non-congruence subgroups

Published online by Cambridge University Press:  24 October 2008

A. J. Scholl
Affiliation:
Department of Mathematical Sciences, University of Durham

Extract

Let Γ be a subgroup of PSL2 () of finite index. In this note we are concerned with the arithmetic nature of the Fourier coefficients of holomorphic Eisenstein series on Γ.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Belyi, G. V.. Galois extensions of a maximal cyclotomic field. Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 267276, 479.Google Scholar
[2]Hecke, E.. Mathematische Werke (Vanderhoeck und Ruprecht, 1959).Google Scholar
[3]Kubert, D. and Lang, S.. Modular Units (Springer-Verlag, 1981).CrossRefGoogle Scholar
[4]Kubota, T.. Elementary Theory of Eisenstein Series (Wiley, 1973).Google Scholar
[5]Manin, Yu. I.. Parabolic points and zeta-functions of modular curves. Math. USSR-Izv. 6 (1972), 1964.CrossRefGoogle Scholar
[6]Serre, J.P.. Groupes Algébriques et Corps de Classes (Hermann, 1959).Google Scholar
[7]Springer, G.. Introduction to Riemann Surfaces (Addison-Wesley, 1957).Google Scholar
[8]Waldschmidt, M.. Nombres transcendents et groupes algébriques. Astérisque 69–70 (1979).Google Scholar
[9]Wolfart, J.. Transzendente Zahlen als Fourierkoeffizienten von Heckes Modulformen. Acta Arith. 39 (1981), 193205.CrossRefGoogle Scholar
[10]Wolfart, J.. Eine arithmetische Eigenschaft automorphe Formen zu gewissen nicht-arithmetischen Gruppen. Math. Ann. 262 (1983), 121.CrossRefGoogle Scholar