No CrossRef data available.
Article contents
A fixed point approach to local minimax theory
Published online by Cambridge University Press: 24 October 2008
Abstract
The generalized Neyman-Pearson theorem for constructing robust hypothesis tests proved by Huber and Strassen is obtained here as an application of the Kakutani-Fan fixed point theorem. The same technique is applied to obtain the existence of locally minimax estimators.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 99 , Issue 2 , March 1986 , pp. 339 - 346
- Copyright
- Copyright © Cambridge Philosophical Society 1986
References
REFERENCES
[1]Beran, R.. Efficient robust estimates in parametric models. Z. Wahrsch. Verw. Gebiete 55 (1981), 91–108.CrossRefGoogle Scholar
[2]Choquet, G.. Theory of capacities. Ann. Inst. Fourier 5 (1953/1954), 131–292.CrossRefGoogle Scholar
[3]Eilenberg, S. and Montgomery, D.. Fixed point theorems for multivalued transformations Amer. J. Math. 68 (1946), 214–222.CrossRefGoogle Scholar
[4]Fan, K.. Fixed-point and minimax theorems in locally convex topological linear spaces. Proc. Nat. Acad. Sci. 38 (1952), 121–126.CrossRefGoogle ScholarPubMed
[5]Huber, P. J.. A robust version of the probability ratio test. Ann. Math. Statist. 36 (1965), 1753–1758.CrossRefGoogle Scholar
[6]Huber, P. J. and Strassen, V.. Minimax tests and the Neyman-Pearson lemma for capacities. Ann. Statist. 1 (1973), 251–263 (corrigendum: Ann. Statist. 2, 223–224).CrossRefGoogle Scholar
[8]Karlin, S.. Mathematical Methods and Theory in Games, Programming and Economics (Addison-Wesley, 1959).Google Scholar
[9]Taylor, A. E. and Lay, D. C.. Introduction to Functional Analysis (2nd edition) (Wiley, 1980).Google Scholar