Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T00:06:22.304Z Has data issue: false hasContentIssue false

Extension of Jauch–Piron states on Jordan algebras

Published online by Cambridge University Press:  24 October 2008

L. J. Bunce
Affiliation:
Mathematics Department, Reading University, Reading, RG6 2AX
J. Hamhalter
Affiliation:
Department of Mathematics, Technical University of Prague, Technika 2, 166 27 Prague 6, Czech Republic

Extract

A state ρ on a JW-algebra or von Neumann algebra M is said to be a Jauch–Piron state if whenever e and f are projections in M with ρ(e) = ρ(f) = 0 then ρ(ef) = 0.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Ajupov, S. A.. Extension of traces and type criterions for Jordan algebras of self-adjoint operators. Math. Zeit. 181 (1982), 253268.CrossRefGoogle Scholar
[2]Amann, A.. Jauch-Piron states in W*-algebras quantum mechanics. J. Math. Phys. 28 (10) (1989), 23842389.CrossRefGoogle Scholar
[3]Bunce, L. J. and Hamhalter, J.. Jauch-Piron States on von Neumann algebras. Math. Zeit. 215 (1994), 491502.CrossRefGoogle Scholar
[4]Chu, C.-H., Dang, T., Russo, B. and Ventura, B.. Surjective isometries of real C*-algebras. J. London Math. Soc. 47 (1993), 97118.CrossRefGoogle Scholar
[5]Hamhalter, J.. Pure Jauch-Piron States on von Neumann algebras. Ann. Inst. Henri Poincaré. Phys. Théorique 58 (1993), 173187.Google Scholar
[6]Hance-Olsen, H.. Split faces and ideal structure in operator algebras. Math. Scand. 48 (1981), 137144.CrossRefGoogle Scholar
[7]Hanche-Olsen, H.. On the structure and tensor products of JC-algebras. Can. J. Math. 35 (1983), 10591074.CrossRefGoogle Scholar
[8]Hanche-Olsen, H. and Størmer, E.. Jordan operator algebras (Pitman, 1984).Google Scholar
[9]Jacobson, N.. Structure and representations of Jordan algebras (Amer. Math. Soc. Colloq. Publ. 39 Providence, 1968).Google Scholar
[10]Jauch, J. M.. Foundations of quantum mechanics (Addison-Wesley, 1968).Google Scholar
[11]Jauch, J. M. and Piron, C.. On the structure of quantum proposition systems. Helv. Phys. Acta 42 (1969), 827837.Google Scholar
[12]Pedersen, G. K.. C*-algebras and their automorphism groups (Academic Press, 1979).Google Scholar
[13]Stacey, P. J.. Local and global splittings in the state space of a JB-algebra. Math. Ann. 256 (1981), 497507.CrossRefGoogle Scholar
[14]Stacey, P. J.. The structure of Type I JBW-algebras. Math. Proc. Camb. Phil. Soc. 90 (1981), 477482.Google Scholar
[15]Størmer, E. M.. On antiautomorphisms of von Neumann algebras. Pacific J. Math. 21 (1967), 349370.CrossRefGoogle Scholar
[16]Stratilla, S. and Zsido, L.. Lectures on von Neumann algebras (Abacus Press, 1979).Google Scholar
[17]Takesaki, M.. Theory of Operator Algebras I (Springer-Verlag, 1979).CrossRefGoogle Scholar