Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-20T12:18:36.492Z Has data issue: false hasContentIssue false

Evaluation operators on the Bergman space

Published online by Cambridge University Press:  24 October 2008

Kehe Zhu
Affiliation:
Department of Mathematics, State University of New York, Albany, NY 12222, U.S.A. E-mail: kzhu©math.albany.edu

Extract

Let D be the open unit disc in the complex plane C and let dA be the normalized area measure on D. The Bergman space is the space of analytic functions f in D such that

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Amar, E.. Suites d'interpolation pour les classes de Bergman de la boule et du polydisque de Cn. Canadian J. Math. 30 (1978), 711737.CrossRefGoogle Scholar
[2]Berger, C., Coburn, L. and Zhu, K.. Function theory on Cartan domains and the Berezin-Toeplitz functional calculus. Amer. J. Math. 110 (1988), 921953.CrossRefGoogle Scholar
[3]Coifman, R. and Rochberg, R.. Representation theorems for holomorphic and harmonic functions in L p. Astérisque 77 (1980), 1166.Google Scholar
[4]Duren, P., Khavinson, D., Shapiro, H. and Sundberg, C.. Contractive zero-divisors in Bergman spaces. Pacific J. Math. 157 (1993), 3756.Google Scholar
[5]Hedenmalm, H.. A factorization theorem for square area-integrable analytic functions. J. Reine Angew. Math. 422 (1991), 4568.Google Scholar
[6]Hedenmalm, H.. An invariant subspace of the Bergman space having the codimension two property. J. Reine Angew. Math. 443 (1991), 19.Google Scholar
[7]Horowitz, C.. Zeros of functions in the Bergman spaces. Duke Math. J. 41 (1974), 693710.CrossRefGoogle Scholar
[8]Mcdonald, G. and Sundberg, C.. Toeplitz operators on the disk. Indiana Univ. Math. J. 28 (1979), 595611.CrossRefGoogle Scholar
[9]Rochberg, R.. Interpolation by functions in Bergman spaces. Michigan Math. J. 28 (1982), 229237.Google Scholar
[10]Rudin, W.. Functional Analysis, 2nd Edition (McGraw Hill, 1991).Google Scholar
[11]Seip, K.. Beurling type density theorems in the unit disc. Invent. Math. 113 (1994), 2139.CrossRefGoogle Scholar
[12]Zhu, K.. Operator Theory in Function Spaces (Marcel Dekker, 1990).Google Scholar
[13]Zhu, K.. Interpolating sequences for the Bergman space. Michigan Math. J. 41 (1994), 7386.CrossRefGoogle Scholar