No CrossRef data available.
Equivariant integrality theorems for differentiable manifolds
Published online by Cambridge University Press: 24 October 2008
Extract
In differential topology it is often useful to be able to find restrictions on the possible vector bundles over a given manifold. For the non-equivariant case these restrictions usually state that some rational multinomial in the various charac teristic classes is an integral multiple of the fundamental cocyle.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 72 , Issue 2 , September 1972 , pp. 189 - 200
- Copyright
- Copyright © Cambridge Philosophical Society 1972
References
REFERENCES
(1)Atiyah, M. F., Bott, R. and Shapiro, A.Clifford modules. Topology 3, Supplement 1, (1964), 3–38.CrossRefGoogle Scholar
(2)Atiyah, M. F. and Segal, G. B.The index of effiptic operators: II. Ann. of Math. 87 (1968), 531–545.CrossRefGoogle Scholar
(3)Atiyah, M. F. and Segal, G. B.Lectures on equivariant K-Theory, notes by Schwarzenberger, R. L. E., University of Warwick.Google Scholar
(4)Atiyah, M. F. and Singer, I. M.The index of elliptic operators: I. Ann. of Math. 87 (1968), 484–530.CrossRefGoogle Scholar
(5)Conner, P. E. and Floyd, E. E.Differentiable periodic maps (Berlin, Gottingen, Heidelberg: Springer-Verlag, 1964).Google Scholar
(6)Hirzebruch, F.Topological methods in algebraic geometry, third edition (Berlin, Heidelberg, New York: Springer-Verlag, 1966).Google Scholar
(7)Mayer, K. H.Elliptische differentialoperatoren und ganzzahligkeitssatze fur charak teristische zahlen. Topology, 4 (1965), 295–313.CrossRefGoogle Scholar
(8)Roberts, R. S. Equivariant integrality theorems for differentiable manifolds. Ph.D. thesis, University of Liverpool (1967).Google Scholar