No CrossRef data available.
Article contents
Entropy and simple waves in multidimensional gas flow
Published online by Cambridge University Press: 24 October 2008
Abstract
It is shown that the n-dimensional simple wave flow of a perfect gas, that is, flow in which the velocity components, pressure and density depend on only one generating function, must be isentropic. This result is then employed to explain why two independent investigations of apparently different types of simple waves have led to the same results.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 72 , Issue 2 , September 1972 , pp. 299 - 302
- Copyright
- Copyright © Cambridge Philosophical Society 1972
References
REFERENCES
(1)Courant, R. and Fbiedrichs, K. O.Supersonic flow and shock waves (Interscience, New York, 1948).Google Scholar
(2)Cumberbatch, E. and Varley, E.Generalized self-similar flows. J. Inst. Math. Appl. 2 (1966), 1–ndash;11.CrossRefGoogle Scholar
(3)Gudebley, G.Starke kugelige und zylindrishe Verdichtungsstosse in der Nahe des Kugelmittelpunktes bzw. der Zylinderachse. Luftfahrtforschung, 19, No. 9 (1942).Google Scholar
(4)Ianenko, N. N.Travelling wave systems of quasi-linear equations (Russian). Dokl. Akad. Naulc. SSSR. 109 (1956), 44–ndash;47.Google Scholar
(5)Levine, L. E.Unsteady, self-similar, two-dimensional simple wave flows. Quart. Appl. Math. 27 (1969), 399–ndash;404.CrossRefGoogle Scholar
(6)Schindler, G. M.Simple waves in multidimensional gas flow, SIAM J. Appl. Math. 19 (1970), 390–ndash;407.CrossRefGoogle Scholar
(7)Sibobov, A. F.Some two-dimensional self-similar flows of a polytropic gas with variable entropy. Soviet Physics Dokl. 12 (1967), 189–191.Google Scholar
(8)Stanyukovich, K. P.Unsteady motion of continuous media. (Pergamon Press, New York, 1960).Google Scholar