Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T01:40:04.623Z Has data issue: false hasContentIssue false

Discontinuous homomorphisms from C*-algebras

Published online by Cambridge University Press:  24 October 2008

D. W. B. Somerset
Affiliation:
School of Mathematics, University of Leeds, Leeds LS2 9JT

Abstract

A necessary and sufficient condition is given for a unital C*-algebra A to admit a discontinuous homomorphism into a Banach algebra which is continuous on its centre. The condition is that A must have a Glimm ideal G such that the C*-algebra A/G admits a discontinuous homomorphism into a Banach algebra.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Albrecht, E. and Dales, H. G.. Continuity of homomorphisms from C*-algebras and other Banach algebras. In Proc. of the Long Beach Conference on Radical Banach Algebras and Automatic Continuity, Lecture Notes in Math. vol. 975 (Springer-Verlag, 1983), pp. 375396.CrossRefGoogle Scholar
[2]Archbold, R. J.. Density theorems for the centre of a C*-algebra. J. London Math. Soc. (2) 10 (1975), 189197.CrossRefGoogle Scholar
[3]Archbold, R. J. and Somerset, D. W. B.. Quasi-standard C*-algebras. Math. Proc. Cambridge Philos. Soc. 107 (1990), 349360.CrossRefGoogle Scholar
[4]Cleveland, S. B.. Homomorphisms of non-commutative *-algebras. Pacific J. Math. 13 (1963), 10971109.CrossRefGoogle Scholar
[5]Dales, H. G.. A discontinuous homomorphism from C(X). Amer. J. Math. 101 (1979), 647734.CrossRefGoogle Scholar
[6]Dales, H. G. and Woodin, W. H.. An Introduction to Independence for Analysts. London Math. Soc. Lecture Note Series no. 115 (Cambridge University Press, 1987).CrossRefGoogle Scholar
[7]Estrele, J.. Semi-normes sur C(K). Proc. London Math. Soc. (3) 36 (1978), 2745.CrossRefGoogle Scholar
[8]Glimm, J.. A Stone-Weierstrass theorem for C*-algebras. Ann. of Math. 72 (1960), 216244.CrossRefGoogle Scholar
[9]Johnson, B. E.. The uniqueness of the (complete) norm topology. Bull. Amer. Math. Soc. 73 (1967), 537541.CrossRefGoogle Scholar
[10]Johnson, B. E.. Continuity of homomorphisms of algebras of operators II. J. London Math. Soc. (2) 1 (1969), 8184.CrossRefGoogle Scholar
[11]Laursen, K. B.. Central factorization in C*-algebras and continuity of homomorphisms. J. London Math. Soc. (2) 28 (1983), 123130.CrossRefGoogle Scholar
[12]Laursen, K. B.. Central factorization in C*-algebras and its use in automatic continuity. Contemp. Math. 32 (1984), 169176.CrossRefGoogle Scholar
[13]Sinclair, A. M.. Homomorphisms from C*-algebras. Proc. London Math. Soc. (3) 29 (1974), 435452CrossRefGoogle Scholar
Sinclair, A. M.. Corrigendum Proc. London Math. Soc. 32 (1976), 322.CrossRefGoogle Scholar
[14]Wright, F. B.. A reduction theory for algebras of finite type. Ann. of Math. 60 (1954), 560570.CrossRefGoogle Scholar