Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T22:17:47.594Z Has data issue: false hasContentIssue false

Dirichlet forms on partial *-algebras

Published online by Cambridge University Press:  24 October 2008

G. O. S. Ekhaguere
Affiliation:
Department of Mathematics, University of Ibadan, Ibadan., Nigeria

Extract

Dirichlet forms and their associated function spaces have been studied by a number of authors [4, 6, 7, 12, 15–18, 22, 25, 26]. Important motivation for the study has been the connection of Dirichlet forms with Markov processes [16–18, 25, 26]: for example, to every regular symmetric Dirichlet form, there is an associated Hunt process [13, 20]. This makes the theory of Dirichlet forms a convenient source of examples of Hunt processes. In the non-commutative setting, Markov fields have been studied by several authors [1–3, 14, 19, 24, 28]. It is therefore interesting to develop a non-commutative extension of the theory of Dirichlet forms and to study their connection with non-commutative Markov processes.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Accardi, L.. On the noncommutative Markov property. Functional Anal. Appl. 9 (1975), 18.CrossRefGoogle Scholar
[2]Accardi, L.. Nonrelativistic quantum mechanics as a non-commutative Markov process. Adv. in Math. 20 (1976), 329366.CrossRefGoogle Scholar
[3]Accardi, L.. Noncommutative Markov chains associated to a pre-assigned evolution: an application to the quantum theory of measurement. Adv. in Math. 29 (1978), 226243.CrossRefGoogle Scholar
[4]Albeverio, S. and Høegh-Krohn, R.. Dirichlet forms and diffusion processes on rigged Hilbert spaces. Z. Wahrsch. Verw. Gebiete 40 (1977), 157.CrossRefGoogle Scholar
[5]Albeverio, S. and Høegh-Krohn, R.. Dirichlet forms and Markov semigroups on C*- algebras. Comm. Math. Phys. 56 (1977), 173187.CrossRefGoogle Scholar
[6]Allain, G.. Sur la representation des forms de Dirichlet. Ann. Inst. Fourier (Grenoble) 25 (1975), 110.CrossRefGoogle Scholar
[7]Andersson, L.-E.. On the representation of Dirichlet forms. Ann. Inst. Fourier (Grenoble) 25 (1975), 1125.CrossRefGoogle Scholar
[8]Antoine, J.-P. and Karwowski, W.. Partial *-algebras of closed operators in Hilbert space. Publ. Res. Inst. Math. Sci. 21 (1985), 205236.CrossRefGoogle Scholar
Addendum, Publ. Res. Inst. Math. Sci. 22 (1986), 507511.Google Scholar
[9]Antoine, J.-P.. States and representations of partial *-algebras. In Spontaneous Symmetry Breakdown and Related Subjects (World Scientific, 1985). pp. 247267.Google Scholar
[10]Antoine, J.-P. and Mathot, F.. Partial *-algebras of closed operators and their commutants I. General Structure. Ann. Inst. H. Poincaré 46 (1987), 299324.Google Scholar
[11]Antoine, J.-P., Mathot, F. and Trapani, C.. Partial *-algebras of closed operators and their commutants II. Commutants and bicommutants. Ann. Inst. H. Poincaré 46 (1987), 325351.Google Scholar
[12]Beurling, A. and Deny, J.. Dirichlet spaces. Proc. Nat. Acad. Sci. U.S.A. 46 (1959), 208215.CrossRefGoogle Scholar
[13]Blumenthal, R. M. and Getoor, R. K.. Markov Processes and Potential Theory (Academic Press, 1968).Google Scholar
[14]Ekhaguere, G. O. S.. Markov fields in noncommutative probability theory on W*-algebras. J. Math. Phys. 20 (1979), 16791683.CrossRefGoogle Scholar
[15]Elliott, J.. Dirichlet spaces and boundary conditions for submarkovian resolvents. J. Math. Anal. Appl. 36 (1971), 251282.CrossRefGoogle Scholar
[16]Fukushima, M.. Regular representations of Dirichlet spaces. Trans. Amer. Math. Soc. 155 (1971), 458473.CrossRefGoogle Scholar
[17]Fukushima, M.. Dirichlet spaces and strong Markov processes. Trans. Amer. Math. Soc. 162 (1971), 185224.CrossRefGoogle Scholar
[18]Fukushima, M.. Dirichlet Forms and Markov Processes (North-Holland, 1980).Google Scholar
[19]Hudson, R. L.. The strong Markov property for canonical Wiener processes. J. Funct. Anal. 34 (1979), 266281.CrossRefGoogle Scholar
[20]Hunt, G. A.. Markoff processes and potentials I, II and III. Illinois J. Math. 1 (1957), 4493.Google Scholar
Hunt, G. A.. Markoff processes and potentials I, II and III. Illinois J. Math. 1 (1957), 316369.Google Scholar
Hunt, G. A.. Markoff processes and potentials I, II and III. Illinois J. Math. 2 (1958), 151213.CrossRefGoogle Scholar
[21]Lassner, G.. Algebras of unbounded operators and quantum dynamics. Phys. A 124 (1984), 471480.CrossRefGoogle Scholar
[22]LeJan, Y.. Belayage et formes de Dirichlet. Z. Wahrsch. Verw. Gebiete 37 (1977), 297319.Google Scholar
[23]Nelson, E.. Non-commutative integration theory. J. Funct. Anal. 15 (1974), 103116.CrossRefGoogle Scholar
[24]Schrader, R. and Uhlenbrock, D. A.. Markov structures on Clifford algebras. J. Funct. Anal. 18 (1975), 369413.CrossRefGoogle Scholar
[25]Silverstein, M. L.. Symmetric Markov Processes. Lecture Notes in Math. vol. 426 (Springer-Verlag, 1974).CrossRefGoogle Scholar
[26]Silverstein, M. L.. Boundary Theory for Symmetric Markov Processes. Lecture Notes in Math. vol. 516 (Springer-Verlag, 1976).CrossRefGoogle Scholar
[27]Takesaki, M.. Theory of Operator Algebras I (Springer-Verlag, 1979).CrossRefGoogle Scholar
[28]Wilde, I. F.. The free Fermion field as a Markov field. J. Funct. Anal. 15 (1974), 1221.CrossRefGoogle Scholar