Dimension subgroups modulo n
Published online by Cambridge University Press: 24 October 2008
Extract
Let G be an arbitrary group and Zn(G) denote the group algebra of G over the integers modulo n. If δi(G) denotes ith power of the augmentation ideal δ(G) of Zn(G), then
is easily seen to be a normal subgroup of G. It is denoted by Di, n(G) and is called ith dimension subgroup of G modulo n. It can be shown that these dimension subgroups are determined by the dimension subgroups modulo a power of a prime p. Hence we shall restrict our attention to these dimension subgroups.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 68 , Issue 3 , November 1970 , pp. 579 - 582
- Copyright
- Copyright © Cambridge Philosophical Society 1970
References
REFERENCES
(2)Jennings, S. A.The structure of the group ring of a p-group over a modular field. Trans. Amer. Math. Soc. 50 (1941), 175–185.Google Scholar
(3)Lazard, M.Sur les groupes nilpotents et les anneaux de Lie. Ann. Sci. École Norm. Sup. (3) 71 (1954), 101–190.CrossRefGoogle Scholar
(4)Zassenhaus, H.Ein Verfahren jeder endlichen p-Gruppe einem Lie-Ring mit der Charakteristik p zuzuordnen. Abh. Math. Sem. Univ. Hamburg 13 (1940), 200–207.CrossRefGoogle Scholar
- 10
- Cited by