Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T14:12:17.388Z Has data issue: false hasContentIssue false

Decomposing locally compact groups into simple pieces

Published online by Cambridge University Press:  02 September 2010

PIERRE-EMMANUEL CAPRACE
Affiliation:
UCLouvain, 1348 Louvain-la-Neuve, Belgium. e-mail: [email protected]
NICOLAS MONOD
Affiliation:
EPFL, 1015 Lausanne, Switzerland. e-mail: [email protected]

Abstract

We present a contribution to the structure theory of locally compact groups. The emphasis is on compactly generated locally compact groups which admit no infinite discrete quotient. It is shown that such a group possesses a characteristic cocompact subgroup which is either connected or admits a non-compact non-discrete topologically simple quotient. We also provide a description of characteristically simple groups and of groups all of whose proper quotients are compact. We show that Noetherian locally compact groups without infinite discrete quotient admit a subnormal series with all subquotients compact, compactly generated Abelian, or compactly generated topologically simple.

Two appendices introduce results and examples around the concept of quasi-product.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[Are46]Arens, R.Topologies for homeomorphism groups. Amer. J. Math. 68 (1946), 593610.CrossRefGoogle Scholar
[BEW08]Barnea, Y., Ershov, M. and Weigel, T. Abstract commensurators of profinite groups. Trans. AMS (to appear).Google Scholar
[Bir34]Birkhoff, G.The topology of transformation-sets. Ann. of Math. (2) 35 (1934), no. 4, 861875.CrossRefGoogle Scholar
[BM00]Burger, M. and Mozes, S. Groups acting on trees: from local to global structure. Inst. Hautes Études Sci. Publ. Math. (2000), no. 92, 113–150 (2001).Google Scholar
[BM02]Burger, M. and Monod, N.Continuous bounded cohomology and applications to rigidity theory. Geom. Funct. Anal. 12 (2002), no. 2, 219280.CrossRefGoogle Scholar
[Bou60]Bourbaki, N.Éléments de mathématique. Première partie. (Fascicule III.) Livre III; Topologie générale. Chap. 3: Groupes topologiques. Chap. 4: Nombres réels, Troisième édition revue et augmentée, Actualités Sci. Indust., No. 1143. (Hermann, 1960).Google Scholar
[Bou71]Bourbaki, N.Éléments de mathématique. Topologie générale. Chapitres 1 à 4 (Hermann, 1971).Google Scholar
[Bou74]Bourbaki, N.Éléments de mathématique. Topologie générale, chap. 5 à 10 (nouvelle édition) (Hermann, 1974).Google Scholar
[Bra48]Braconnier, J.Sur les groupes topologiques localement compacts. J. Math. Pures Appl. (9) 27 (1948), 185.Google Scholar
[Cap09]Caprace, P.-E.Amenable groups and Hadamard spaces with a totally disconnected isometry group. Comment. Math. Helv. 84 (2009), 437455.CrossRefGoogle Scholar
[CER08]Carbone, L., Ershov, M. and Ritter, G.Abstract simplicity of complete Kac-Moody groups over finite fields. J. Pure Appl. Algebra 212 (2008), no. 10, 21472162.CrossRefGoogle Scholar
[CH06]Caprace, P.-E. and Haglund, F.On geometric flats in the CAT(0) realization of Coxeter groups and Tits buildings. Canad. J. Math. 61 (2009), no. 4, 740761.CrossRefGoogle Scholar
[CM09]Caprace, P.-E. and Monod, N.Isometry groups of non-positively curved spaces: structure theory. J Topology 2 (2009), no. 4, 661700.CrossRefGoogle Scholar
[DdSMS99]Dixon, J. D., du Sautoy, M. P. F., Mann, A. and Segal, D.Analytic Pro-p Groups, second ed. Cambridge Studies in Advanced Math., vol. 61 (Cambridge University Press, 1999). MR MR1720368 (2000m:20039)CrossRefGoogle Scholar
[Dix96]Dixmier, J.Les Algèbres d'Opérateurs dans L'espace Hilbertien (Algèbres de von Neumann). Les Grands Classiques Gauthier-Villars (Éditions Jacques Gabay, 1996), Reprint of the second (1969) edition.Google Scholar
[Dug96]Dugundji, J.Topology (Allyn and Bacon Inc., 1966).Google Scholar
[Fre36]Freudenthal, H.Topologische Gruppen mit genügend vielen fastperiodischen Funktionen. Ann. of Math. (2) 37 (1936), no. 1, 5777.CrossRefGoogle Scholar
[Gb46]Gol′ berg, P.The Silov II-groups of locally normal groups. Rec. Math. [Mat. Sbornik] N.S. 19 (61) (1946), 451460.Google Scholar
[GLS94]Gorenstein, D., Lyons, R. and Solomon, R. The classification of the finite simple groups, Math. Surv. Monogr. vol. 40 (American Mathematical Society, 1994).Google Scholar
[GM67]Grosser, S. and Moskowitz, M.On central topological groups. Trans. Amer. Math. Soc. 127 (1967), 317340.CrossRefGoogle Scholar
[GM71]Grosser, S. and Moskowitz, M.Compactness conditions in topological group. J. Reine Angew. Math. 246 (1971), 140.Google Scholar
[GP57]Gleason, A. M. and Palais, R. S.On a class of transformation groups. Amer. J. Math. 79 (1957), 631648.CrossRefGoogle Scholar
[Gui73]Guivarc'h, Y.Croissance polynomiale et périodes des fonctions harmoniques. Bull. Soc. Math. France 101 (1973), 333379.CrossRefGoogle Scholar
[HR79]Hewitt, E. and Ross, K. A.Abstract harmonic analysis. Vol. I, second ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115 (Springer-Verlag, 1979). Structure of topological groups, integration theory, group representations.CrossRefGoogle Scholar
[Iwa49]Iwasawa, K.On some types of topological groups. Ann. of Math. (2) 50 (1949), 507558.CrossRefGoogle Scholar
[Kel75]Kelley, J. L.General Topology (Springer-Verlag, 1975). Reprint of the 1955 edition [Van Nostrand, Toronto, Ont.], Graduate Texts in Math., No. 27.Google Scholar
[KK44]Kakutani, S. and Kodaira, K.Über das Haarsche Mass in der lokal bikompakten Gruppe. Proc. Imp. Acad. Tokyo 20 (1944), 444450.Google Scholar
[LW70]Lee, D. H. and Wu, T.-S.On CA topological groups. Duke Math. J. 37 (1970), 515521.CrossRefGoogle Scholar
[Mar91]Margulis, G. A. Discrete subgroups of semisimple Lie groups. Ergeb. Math. Grenzgeb (3), vol. 17 (1991).CrossRefGoogle Scholar
[Men65]Mennicke, J. L.Finite factor groups of the unimodular group. Ann. of Math. (2) 81 (1965), 3137.CrossRefGoogle Scholar
[Mon01]Monod, N.Continuous bounded cohomology of locally compact groups. Lecture Notes in Math. vol. 1758 (Springer-Verlag, 2001).CrossRefGoogle Scholar
[Moz98]Mozes, S.Products of trees, lattices and simple groups. Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), no. Extra Vol. II (1998), pp. 571582 (electronic). MR MR1648106 (2000a:20056).Google Scholar
[MŚ59]Macbeath, M. and Świerczkowski, S.On the set of generators of a subgroup. Nederl. Akad. Wetensch. Proc. Ser. A 62 = Indag. Math. 21 (1959), 280281.CrossRefGoogle Scholar
[MvN43]Murray, F. J. and Neumann, J. vonOn rings of operators, IV. Ann. of Math. (2) 44 (1943), 716808.CrossRefGoogle Scholar
[MZ55]Montgomery, D. and Zippin, L. Topological Transformation Groups (Interscience Publishers, 1955).Google Scholar
[Nik09]Nikolov, N. Strange images of profinite groups. Preprint, 2009.Google Scholar
[Pat88]Paterson, A. L. T. Amenability. Math. Surv. Monogr., vol. 29 (1988).CrossRefGoogle Scholar
[Pla65]Platonov, V. P.Lokal projective nilpotent radicals in topological groups. Dokl. Akad. Nauk BSSR 9 (1965), 573577.Google Scholar
[Pla77]Plaumann, P.Automorphismengruppen diskreter Gruppen als topologische Gruppen. Arch. Math. (Basel) 29 (1977), no. 1, 3233.CrossRefGoogle Scholar
[Pon39]Pontrjagin, L. S.Topological Groups. Princeton Mathematical Series, v. 2 (Princeton University Press, 1939). Translated from the Russian by Emma Lehmer.Google Scholar
[Sch25]Schreier, O.Abstrakte kontinuierliche Gruppen. Abh. Math. Hamburg 4 (1925), 1532.CrossRefGoogle Scholar
[Tit64]Tits, J.Algebraic and abstract simple groups. Ann. of Math. (2) 80 (1964), 313329.CrossRefGoogle Scholar
[TV99]Thomas, S. and Velickovic, B.On the complexity of the isomorphism relation for finitely generated groups. J. Algebra 217 (1999), no. 1, 352373.CrossRefGoogle Scholar
[Uša63]Ušakov, V. I.Topological FC-groups. Sibirsk. Mat. Ž. 4 (1963), 11621174.Google Scholar
[vD30]van Dantzig, D.Ueber topologisch homogene Kontinua. Fund. Math. 15 (1930), 102125.CrossRefGoogle Scholar
[vD31]van Dantzig, D. Studien over topologische algebra (proefschrift). Ph.D. thesis (Groningen, 1931).Google Scholar
[vDvdW28]van Dantzig, D. and van der Waerden, B. L.über metrisch homogene Räume. Abh. Math. Hamburg 6 (1928), no. 2, 367376.CrossRefGoogle Scholar
[Vie27]Vietoris, L.Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen. Math. Ann. 97 (1927), 454472.CrossRefGoogle Scholar
[Wan69]Wang, S. P.The automorphism group of a locally compact group. Duke Math. J. 36 (1969), 277282.CrossRefGoogle Scholar
[Wei40]Weil, A. L'intégration dans les groupes topologiques et ses applications. Actual. Sci. Ind. no. 869 (Hermann et Cie., 1940).Google Scholar
[Wil71]Wilson, J. S.Groups with every proper quotient finite. Proc. Camb. Philos. Soc. 69 (1971), 373391.CrossRefGoogle Scholar
[Wil94]Willis, G. A.The structure of totally disconnected, locally compact groups. Math. Ann. 300 (1994), no. 2, 341363.CrossRefGoogle Scholar
[Wil07]Willis, G. A.Compact open subgroups in simple totally disconnected groups. J. Algebra 312 (2007), no. 1, 405417.CrossRefGoogle Scholar
[Wu71]Wu, T.-S.On (CA) topological groups. II. Duke Math. J. 38 (1971), 513519.CrossRefGoogle Scholar
[Zer76]Zerling, D.(CA) topological groups. Proc. Amer. Math. Soc. 54 (1976), 345351.Google Scholar