Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T19:04:40.075Z Has data issue: false hasContentIssue false

A counterexample to R. Davidson's conjecture on line processes

Published online by Cambridge University Press:  24 October 2008

Olav Kallenberg
Affiliation:
Department of Mathematics, Fack, S-402 20 Göteborg 5, Sweden

Abstract

Rollo Davidson conjectured in 1968 that every stationary second order line process in the plane which has a.s. no parallel lines is necessarily a Cox (or doubly stochastic Poisson) process. This conjecture is disproved here. An affirmative answer is further given to the question whether there exists a lattice type point process in the plane which is stationary under arbitrary area preserving affine transformations.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Billingsley, P.Convergence of probability measures (New York: Wiley, 1968).Google Scholar
(2)Harding, E. F. and Kendall, D. G. (eds.). Stochastic geometry (London: Wiley, 1974).Google Scholar
(3)Kallenberg, O.Random measures (Berlin: Akademie-Verlag, 1975, and London, Academic Press, 1976).Google Scholar
(4)Kallenberg, O.On the structure of stationary flat processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 37 (1976), 157174.CrossRefGoogle Scholar
(5)Kerstan, J., Mattres, K. and Mecke, J.Unbegrenzt teilbare Punktprozesse (Berlin: Akademie-Verlag, 1974).Google Scholar
(6)Kricreberg, K. Theory of hyperplane processes. In Stochastic point processes: statistical analysis, theory, and applications (ed. Lewis, P. A. W.), pp. 514521 (New York: Wiley-Interscience, 1972).Google Scholar
(7)Papangelou, F.The conditional intensity of general point processes and an application to line processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 28 (1974), 207226.CrossRefGoogle Scholar
(8)Papangelou, F.Point processes on spaces of flats and other homogeneous spaces. Math. Proc. Cambridge Philos. Soc. 80 (1976), 297314.CrossRefGoogle Scholar
(9)Santaló, L. A.Integral geometry and geometric probability (Reading, Massachusetts: Addison-Wesley, 1976).Google Scholar
(10)Siegel, C. L.A mean value theorem in geometry of numbers. Ann. of Math. 46 (1945), 340347.CrossRefGoogle Scholar