Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T07:47:09.788Z Has data issue: false hasContentIssue false

Compressible flows with circular sector hodographs

I. The general solution for simple wedge flows and a theorem on sonic jets

Published online by Cambridge University Press:  24 October 2008

Maureen D. McLaughlin
Affiliation:
Department of Mathematics, University of Strathclyde, Glasgow
D. C. Pack
Affiliation:
Department of Mathematics, University of Strathclyde, Glasgow

Abstract

The general solution of Chaplygin's equation for the motion of an inviscid compressible fluid is obtained for ‘simple wedge flows’. Some particular examples are given and a discrepancy in earlier Russian papers explained. After a discussion of the properties of the velocity potential and the expression for the physical coordinates in terms of the hodograph variables, a general theorem on sonic jets is proved, namely, that the physical changes due to the presence of solid boundaries in the flow are completed within a finite distance in those directions in which the flow becomes finally a sonic jet.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Aslanov, S. K.Prikl. Mat. Mekh. 21 (1957), 297.Google Scholar
(2)Aslanov, S. K. and Legkova, V. A.J. App. Math. Mech. 23 (1959), 266.CrossRefGoogle Scholar
(3)Bergman, S.J. Rat. Mech. Anal. 4 (1955), 883.Google Scholar
(4)Birkhoff, G. and Zarantonello, E. H.Jets, Wakes and Cavities. (Academic Press Inc.; New York, 1957).Google Scholar
(5)Chaplygin, A.Ann. Sci. Univ. Moscow 21 (1904), 1; translated in N.A.C.A. Tech. Memo. No. 1063 (1944) and Ministry of Supply, R.T.P. translation No. 1267.Google Scholar
(6)Cherry, T. M.Proc. Roy. Soc. Ser. A 192 (1947), 45.Google Scholar
(7)Fal'kovich, S. V.Prikl. Mat. Mekh. 21 (1957), 4.Google Scholar
(8)Germain, P. J.Rat. Mech. Anal. 4 (1955), 925.Google Scholar
(9)Germain, P. and Bader, R.O.N.E.R.A. Publ. No. 60 (1952).Google Scholar
(10)Guderley, G.Tech. Rep. No. F-TR-2168-ND H.Q. Air Mat. Command (Wright Field, 1947).Google Scholar
(11)Lighthill, M. J.Proc. Roy. Soc. Ser. A 191 (1947), 341.Google Scholar
(12)Mackie, A. G.Proc. Cambridge Philos. Soc. 54 (1958), 538.CrossRefGoogle Scholar
(13)Mackie, A. G.Proc. Cambridge Philos. Soc. 58 (1962), 631.CrossRefGoogle Scholar
(14)Ovsiannikov, L. V.Prikl. Mat. Mekh. 13 (1949), No. 5; translated in N.A.C.A. Tech. Memo. No. 1295(1951).Google Scholar
(15)Roumieu, C.C.R. Acad. Sci. Paris Sér. A-B 234 (1952), 52.Google Scholar
(16)Sedov, L. I.Two-dimensional problems in hydrodynamics and aerodynamics. Translation edited by Chu, C. K., Cohen, H. and Seckler, B.. (Interscience; New York, 1965).CrossRefGoogle Scholar
(17)Tomotika, S. and Tamada, T.Quart. Appl. Math. 9 (1951), 129.CrossRefGoogle Scholar
(18)Troshin, V. I.J. Appl. Math. Mech. 23 (1959), 1090.CrossRefGoogle Scholar
(19)Troshin, V. I. J.App. Math. Mech. 23 (1959), 1340.CrossRefGoogle Scholar