Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T12:31:35.307Z Has data issue: false hasContentIssue false

Completely positive maps into corona algebras

Published online by Cambridge University Press:  01 September 2009

DAN Z. KUCEROVSKY
Affiliation:
Department of Mathematics and Statistics, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3Canada. e-mail: [email protected]
P. W. NG
Affiliation:
University of Louisiana at Lafyette, 217 Doucet Hall P.O. Box 41010 Lafayette, LA, U.S.A. 70504-1010. e-mail: [email protected]

Abstract

We prove a decomposition theorem similar to the well-known result of Voiculescu's: namely that completely positive maps A(B)/B factor through a given homomorphism ι: A(B)/B when the homomorphism ι has a certain infiniteness property.

The algebra B is only assumed to be separable and nonunital; in particular, it is not assumed to be stable. The C*-algebra A is assumed to be separable, unital and nuclear.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Akemann, C. A., Anderson, J. and Pedersen, G. K.Diffuse sequences and Perfect C*-algebras. Trans. Amer. Math. Soc. 298 (1986), 747762.Google Scholar
[2]Brown, L.Semicontinuity and multipliers of C*-algebras. Canad. J. Math. 40 (1988), 865988.CrossRefGoogle Scholar
[3]Blackadar, B. Comparison theory for simple C*-algebras. Operator algebras and applications, Vol. 1, 2154, London Math. Soc. Lecture Note Ser. 135 (Cambridge University Press, 1988).Google Scholar
[4]Busby, R. C.Double centralizers and extensions of C*-algebras. Trans. Amer. Math. Soc. 132 (1968), 7999.Google Scholar
[5]Choi, M.-D.Completely positive linear maps on complex matrics. Linear Algebra and Appl. 10 (1975), 285290.CrossRefGoogle Scholar
[6]Effros, E. and Ruan, Z.-J.Operator Spaces (Oxford University Press, 2000).Google Scholar
[7]Elliott, G. A.Derivations of Matroid C*-algebras, II. Ann. of Math. (2) 100, 407422.CrossRefGoogle Scholar
[8]Elliott, G. A.A remark on orthogonality of elements of a C*-algebra, to appear in C. R. Math. Rep. Acad. Sci. Canada 31 (2009).Google Scholar
[9]Elliott, G. A. and Handelman, D. E. Addition of C*-algebra extensions. Pacific J. Math. 137, (1989), pp. 87–121.Google Scholar
[10]Elliott, G. A. and Kucerovsky, D.An abstract Brown–Douglas–Fillmore absorption theorem. Pacific J. of Math. 3 (2001), 125.Google Scholar
[11]Hjelmborg, J. and Rørdam, M.On stability of C*-algebras. J. Funct. Anal. 155 (1998), 153170.CrossRefGoogle Scholar
[12]Goodearl, K. R.Partially ordered abelian groups with interpolation. Math. Surveys Monogr. 20 (1986).Google Scholar
[13]Haagerup, U.An example of a nonnuclear C*-algebra which has the metric approximation property. Invent. Math. 50 (1978/79), no. 3, 279293.CrossRefGoogle Scholar
[14]Haagerup, U.Injectivity and decomposition of completely bounded maps. Lecture Notes in Math., 1132 (Springer, 1985).CrossRefGoogle Scholar
[15]Haagerup, U. and Thorbjornsen, S.A new application of random matrics: Ext(C*r(2)) is not a group. Ann. of Math. (2); 162 (2005), no. 2, 711775.CrossRefGoogle Scholar
[16]Kasparov, G. G.The operator K-functor and extensions of C*-algebras. Math. USSR Izvestia. 16 (1981), pp. 513572.CrossRefGoogle Scholar
[17]Kasparov, G. G.Hilbert C*–modules: theorems of Stinespring and Voiculescu. J. Operator Theory 4 (1980), 133150.Google Scholar
[18]Kirchberg, E. and Rørdam, M.Non-simple purely infinite C*-algebras. American J. Math. 122 (2000), 637666.CrossRefGoogle Scholar
[19]Kucerovsky, D.Double commutants of hereditary subalgebras of a corona. J. Funct. Anal. 219 (2005), 245254.CrossRefGoogle Scholar
[20]Kucerovsky, D.When are Fredholm triples operator homotopic?, Proc. Amer. Math. Soc., 135 (2007), pp. 405415.CrossRefGoogle Scholar
[21]Kucerovsky, D.Large fredholm triples. J. Funct. Anal., 236 (2006), pp. 395408.CrossRefGoogle Scholar
[22]Kucerovsky, D. and Ng, P. W.Decomposition rank and absorbing extensions of type I C*-algebras. J. Funct. Anal. 4 (2005), 2536.CrossRefGoogle Scholar
[23]Kucerovsky, D. and Ng, P. W.The corona factorization property and approximate unitary equivalence. Houston J. Math. 32 (2006), pp. 531550.Google Scholar
[24]Lin, H.Simple C*-algebras with continuous scales and simple corona algebras. Proc. Amer. Math. Soc. 104 (1991), 871880.Google Scholar
[25]Lin, H.Simple corona C*-algebras. Proc. Amer. Math. Soc. 132 (2004), pp. 32153224.CrossRefGoogle Scholar
[26]Lin, H.Ideals of multiplier algebras of simple AF C*-algebras. Proc. Amer. Math. Soc. 104 (1988), 239244.Google Scholar
[27]Lin, H. Stable approximate unitary equivalence of homomorphisms. J. Operator Theory 47 (2002), pp. 343–378.Google Scholar
[28]Mathieu, M.Elementary operators on prime C*-algebras. I. Math. Ann. 284 (1989), no. 2, 223244.CrossRefGoogle Scholar
[29]Mingo, J. A.K-theory and multipliers of stable C*-algebras. Trans. Amer. Math. Soc. 299 (1987), 397411.Google Scholar
[30]Pedersen, G. K.C*-algebras and their Automorphism Groups. (Academic Press, 1979).Google Scholar
[31]Robertson, A. G. and Smith, R. R.Liftings and extensions of maps on C*-algebras. J. Operator Theory 21 (1989), 117131.Google Scholar
[32]Rørdam, M.Extensions of stable C*-algebras. Documenta Math. 6 (2001), 241246.CrossRefGoogle Scholar
[33]Rørdam, M.Stability of C*-algebras is not a stable property. Documenta Math. 2 (1997), 375386.CrossRefGoogle Scholar
[34]Rørdam, M. Stable C*-algebras. Adv. Stud. Pure Math. (2003), (Operator algebras and applications) 1–23.CrossRefGoogle Scholar
[35]Rørdam, M.A simple C*-algera with a finite and an infinite projection. Acta Math. 191 (2003), 109142.CrossRefGoogle Scholar
[36]Voiculescu, D.A non-commutative Weyl-von Neumann theorem. Rev. Roum. Math. Pures Appl. 21 (1976), pp. 97113.Google Scholar
[37]Wegge-Olsen, N. E.K-Theory and C*-Algebras (Oxford University Press, 1994).CrossRefGoogle Scholar
[38]Zhang, S.A Riesz decomposition property and ideal structure of multiplier algebra. J. Operator Theory 24 (1990), 209225.Google Scholar