Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-30T21:07:49.486Z Has data issue: false hasContentIssue false

Cofiniteness and vanishing of local cohomology modules

Published online by Cambridge University Press:  24 October 2008

Craig Huneke
Affiliation:
Department of Mathematics, Purdue University, W. Lafayette, IN 47907, U.S.A.
Jee Koh
Affiliation:
Department of Mathematics, University of Indiana, Bloomington, IN 47405, U.S.A.

Extract

Let R be a noetherian local ring with maximal ideal m and residue field k. If M is a finitely generated R-module then the local cohomology modules are known to be Artinian. Grothendieck [3], exposé 13, 1·2 made the following conjecture:

If I is an ideal of R and M is a finitely generated R-module, then HomR (R/I, ) is finitely generated.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Brodmann, M.. Einige Ergebnisse aus der Lokalen Kohomologietheorie und Ihre Anwendung. Osnabrück. Schrift. Math. no. 5 (University of Osnabrück, 1983).Google Scholar
[2]Grothendieck, A.. Local Cohomology, notes by R. Hart shorne. Lecture Notes in Math. vol. 862 (Springer-Verlag, 1966).Google Scholar
[3]Grothendieck, A.. Cohomologie Locale des Faisceaux et Theoremes de Lefshetz Locaux et Globaux (North Holland, 1969).Google Scholar
[4]Hartshorne, R.. Affine duality and cofiniteness. Invent. Math. 9 (1970), 145164.CrossRefGoogle Scholar
[5]Hartshorne, R.. Cohomological dimension of algebraic varieties. Ann. of Math. 88 (1968), 403450.CrossRefGoogle Scholar
[6]Hartshorne, R. and Speiser, R.. Local cohomological dimension in characteristic p. Ann. of Math. 105 (1977), 4579.CrossRefGoogle Scholar
[7]Huneke, C. and Lyubeznik, G.. On the vanishing of local cohomology. Invent. Math. 102 (1990), 7393.CrossRefGoogle Scholar
[8]Matlis, E.. Injective modules over noetherian rings. Pacific J. Math. 8 (1958), 511528.CrossRefGoogle Scholar
[9]Ogus, A.. Local cohomological dimension of algebraic varieties. Ann. of Math. 98 (1973), 327365.CrossRefGoogle Scholar
[10]Hartshorne, C. and Szpiro, L.. Dimension projective finie et cohomologie locale. Inst. Hautes Études Sci. Publ. Math. 42 (1973), 323395.Google Scholar
[11]Rotman, J.. An Introduction to Homological Algebra (Academic Press, 1979).Google Scholar
[12]Serre, J. P.. Algebra Locale; Multiplicities. Lecture Notes in Math. vol. 11 (Springer-Verlag, 1965).Google Scholar