Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T13:43:41.468Z Has data issue: false hasContentIssue false

The coefficients of certain integral modular forms

Published online by Cambridge University Press:  24 October 2008

R. A. Rankin
Affiliation:
The UniversityBirmingham 15
J. M. Rushforth
Affiliation:
The UniversityBirmingham 15

Extract

The notation which we use is that of a recent paper by one of us, and we quote results from that paper as they are required. It is known (see R, Theorem 1, for example) that the vector space k of all cusp-forms f(z) of even negative dimension – k (k ≥ 12), belonging to the full modular group Γ(1), possesses a finite basis of forms

where k is defined by (2·10) of R and the coefficients possess the following properties:

for a prime p, where p is a positive integer.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1954

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Hecke, E.Analytische Arithmetik der positiven quadratischen Formen. Math.-Fys. Medd. XVII, 12 (1940), 1134.Google Scholar
(2)Petersson, H.Über eine Metrisierung der ganzen Modulformen. Jber. dtsch. Mat Ver. 49 (1939), 4975.Google Scholar
(3)Petersson, H.Konstruktion der sämtlichen Lösungen einer Riemannschen Funktional-gleichung durch Dirichlet-Reihen mit Eulerscher Produktentwicklung I. Math. Ann., 116 (1939), 401–12.CrossRefGoogle Scholar
(4)Rankin, R. A.The scalar product of modular forms. Proc. Lond. math. Soc. (3), 2 (1962), 198217.Google Scholar