No CrossRef data available.
Article contents
Coefficient inequalities for analytic functions in H1
Published online by Cambridge University Press: 24 October 2008
Abstract
Improving earlier result of Hardy and Littlewood[1] and McGehee, Pigno and Smith[2] we show for analytic functions on the unit disc that
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 120 , Issue 2 , August 1996 , pp. 331 - 337
- Copyright
- Copyright © Cambridge Philosophical Society 1996
References
REFERENCES
[1]Hardy, G. H. and Littlewood, J. E.. Some new properties of Fourier constants. Math. Ann. 97 (1926), 159–209.CrossRefGoogle Scholar
[2]McGehee, O. C., Pigno, L. and Smith, B.. Hardy's inequality and the L 1 norm of exponential sums. Ann. Math. 113 (1981), 613–618.Google Scholar
[3]Stegeman, J. D.. On the Constant in the Littlewood problem. Math. Ann. 261 (1982), 51–54.CrossRefGoogle Scholar
[4]Wittmann, R.. A general law of iterated logarithm. Z. Wahrscheinlichkeitstheorie verw. Geb. 68 (1985), 521–543.CrossRefGoogle Scholar
[5]Yabuta, K.. A remark on the Littlewood conjecture. Bull. Fac. Sci. Ibaraki Univ. 14 (1982), 19–21.Google Scholar