Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-04T21:14:09.678Z Has data issue: false hasContentIssue false

The classifying space of a crossed complex

Published online by Cambridge University Press:  24 October 2008

Ronald Brown
Affiliation:
School of Mathematics, University of Wales, Dean Street, Bangor, Gwynedd LL57 1UT
Philip J. Higgins
Affiliation:
Department of Mathematical Sciences, University of Durham, Science Laboratories, South Road, Durham DH1 3LE

Extract

The aim of this paper is to show one more facet of the role of crossed complexes as generalisations of both groups (or groupoids) and of chain complexes. We do this by defining and establishing the main properties of a classifying space functor B: from the category of crossed complexes to the category of spaces.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Ashley, N. K.. Crossed complexes and T-complexes. Ph.D. Thesis, University of Wales (1978); published in Dissertationes Math. 165 as Simplicial T-complexes: A Non Abelian Version of a Theorem of Dold-Kan (1988).Google Scholar
[2]Baues, H. J.. Algebraic Homotopy (Cambridge University Press, 1989).CrossRefGoogle Scholar
[3]Baues, H. J.. The homotopy type of 4-dimensional CW-complexes. Preprint, Max-Planck-Institüt, Bonn (1986).Google Scholar
[4]Baues, H. J.. Combinatorial Homotopy and 4-Dimensional Complexes (De Gruyter, 1991).CrossRefGoogle Scholar
[5]Baues, H. J. and Brown, R.. On relative homotopy groups of the product filtration and a formula of Hopf. Bangor Math. Preprint no. 25 (1990).Google Scholar
[6]Baues, H. J. and Conduché, D.. On the tensor algebra of a non-Abelian group and applications. Preprint, Max-Planck Institut (1991).CrossRefGoogle Scholar
[7]Blakers, A. L.. Some relations between homology and homotopy groups. Ann. of Math. 49 (1948), 428461.CrossRefGoogle Scholar
[8]Brown, R.. Cohomology with coefficients in a chain complex. Proc. London Math. Soc. (3) 14 (1964), 545565.CrossRefGoogle Scholar
[9]Brown, R.. On Künneth suspensions. Proc. Cambridge Philos. Soc. 60 (1964), 713720.CrossRefGoogle Scholar
[10]Brown, R.. Non-Abelian cohomology and the homotopy classification of maps. In Homotopie Algébrique et Algebre Locale, Conf. Marseille-Luminy 1982 (ed. Lemaire, J.-M. et al. Thomas, J.-C.), Astérisque 113–114 (1984), pp. 167172.Google Scholar
[11]Brown, R.. Coproducts of crossed P-modules: applications to second homotopy groups and the homology of groups. Topology 23 (1984), 337345.CrossRefGoogle Scholar
[12]Brown, R.. Topology: A Geometric Account of General Topology, Homotopy Types and the Fundamental Groupoid (Ellis Horwood, 1988).Google Scholar
[13]Brown, R. and Golasinski, M.. A model structure for the homotopy theory of crossed complexes. Cahiers Topologie Géom. Différentielle Catégoriques 30 (1989), 6182.Google Scholar
[14]Brown, R. and Higgins, P. J.. Sur les complexes croisés, ω-groupoïdes et T-eomplexes. C.R. Acad. Sci. Paris Sér. A 285 (1977), 997999.Google Scholar
[15]Brown, R. and Higgins, P. J.. Sur les complexes croisés d'homotopie associés à quelques espaces filtrés. C.R. Acad. Sci. Paris Sér. A 286 (1978), 9193.Google Scholar
[16]Brown, R. and Higgins, P. J.. On the algebra of cubes. J. Pure Appl. Algebra 21 (1981), 233260.CrossRefGoogle Scholar
[17]Brown, R. and Higgins, P. J.. Colimit theorems for relative homotopy groups. J. Pure Appl. Algebra 22 (1981), 1141.CrossRefGoogle Scholar
[18]Brown, R. and Higgins, P. J.. Crossed complexes and non-Abelian extensions. In Proc. International Conference on Category Theory: Gummersbach, 1981, Lecture Notes in Math, vol. 962 (Springer-Verlag, 1982), pp. 3950.CrossRefGoogle Scholar
[19]Brown, R. and Higgins, P. J.. The equivalence of ∞-groupoids and crossed complexes. Cahiers Topologie Géom. Différentielle Catégoriques 22 (1981), 371386.Google Scholar
[20]Brown, R. and Higgins, P. J.. Tensor products and homotopies for ω-groupoids and crossed complexes. J. Pure Appl. Algebra 47 (1987), 133.CrossRefGoogle Scholar
[21]Brown, R. and Higgins, P. J.. Crossed complexes and chain complexes with operators. Math. Proc. Cambridge Philos. Soc. 107 (1990), 3357.CrossRefGoogle Scholar
[22]Brown, R. and Loday, J.-L.. Van Kampen theorems for diagrams of spaces. Topology 26 (1987), 331335.CrossRefGoogle Scholar
[23]Cegarra, A. and Bullejos, M.. A 3-dimensional non-Abelian cohomology of groups with applications to homotopy classification of continuous maps. Preprint, Universidad Granada (1989).Google Scholar
[24]Dakin, M. K.. Kan complexes and multiple groupoid structures. Ph.D. thesis, University of Wales (1977).Google Scholar
[25]Dold, A.. Homology of symmetric products and other functors of complexes. Ann. of Math. 68 (1958), 239281.CrossRefGoogle Scholar
[26]Gilbert, N. D. and Higgins, P. J.. The non-Abelian tensor product of groups and related constructions. Glasgow Math. J. 31 (1989), 1729.CrossRefGoogle Scholar
[27]Gitler, S.. Cohomology operations with local coefficients. Amer. J. Math. 101 (1962), 156188.Google Scholar
[28]Gottlieb, D. H.. Covering transformations and universal fibrations. Illinois J. Math. 13 (1969), 432437.CrossRefGoogle Scholar
[29]Hansen, V. L.. Spaces of maps into Eilenberg-Mac Lane spaces. Canad. J. Math. 33 (1981), 782785.CrossRefGoogle Scholar
[30]Holt, D. F.. An interpretation of the cohomology groups Hn(G, M). J. Algebra 16 (1970), 307318.Google Scholar
[31]Howie, J.. Pullback functors and crossed complexes. Cahiers Topologie Géom. Différentielle Catégoriques 20 (1970), 281295.Google Scholar
[32]Huebschmann, J.. Crossed n-fold extensions and cohomology. Comment. Math. Helv. 55 (1980), 302314.CrossRefGoogle Scholar
[33]Kamps, H. J.. Kan Bedingungen und abstrakte homotopietheorie. Math. Z. 124 (1972), 215236.CrossRefGoogle Scholar
[34]Kelly, G. M.. The Basic Concepts of Enriched Category Theory. London Math. Soc. Lecture Notes Series no. 64 (Cambridge University Press, 1983).Google Scholar
[35]Loday, J.-L.. Spaces with finitely many non trivial homotopy groups. J. Pure Appl. Algebra 24 (1982), 179202.Google Scholar
[36]Lue, A. S.-T.. Cohomology of groups relative to a variety. J. Algebra 69 (1981), 155174.CrossRefGoogle Scholar
[37]Lane, S. Mac. Historical note. J. Algebra 60 (1979), 319320.CrossRefGoogle Scholar
[38]Lane, S. Mac and Whitehead, J. H. C.. On 3-types. Proc. Nat. Acad. Sci. Wash. 36 (1950), 4148.Google Scholar
[39]May, J. P.. Simplicial Objects in Algebraic Topology (Van Nostrand, 1967).Google Scholar
[40]McClendon, J. F.. Obstruction theory in fiber spaces. Math. Z. 120 (1971), 117.Google Scholar
[41]Tie, G. Nan. A Dold–Kan theorem for crossed complexes. J. Pure Appl. Algebra 56 (1989), 177194.Google Scholar
[42]Tie, G. Nan. Iterated W and T-groupoids. J. Pure Appl. Algebra 56 (1989), 195209.Google Scholar
[43]Quillen, D. G.. Homotopical Algebra. Lecture Notes in Math. vol. 43 (Springer-Verlag, 1967).CrossRefGoogle Scholar
[44]Quillen, D. G.. The geometric realization of a Kan fibration is a Serre fibration. Proc. Amer. Math. Soc. 19 (1968), 14991500.CrossRefGoogle Scholar
[45]Siegel, J.. Higher order operations in local coefficient theory. Amer. J. Math. 89 (1967), 909931.CrossRefGoogle Scholar
[46]Steinberger, M. and West, J.. Covering homotopy properties of maps between CW-complexes and ANRs. Proc. Amer. Math. Soc. 92 (1984), 573577.Google Scholar
[47]Thom, R.. L'homologie des espaces fonctionnel. In Colloque de topologie algébrique, Louvain (1956), Thone, Liège; Masson, Paris (1957), pp. 2939.Google Scholar
[48]Whitehead, G. W.. Elements of Homotopy Theory (Springer-Verlag, 1978).CrossRefGoogle Scholar
[49]Whitehead, J. H. C.. Combinatorial homotopy II. Bull. Amer. Math. Soc. 55 (1949), 453496.CrossRefGoogle Scholar