Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T02:04:13.938Z Has data issue: false hasContentIssue false

Certain fractional q-integrals and q-derivatives

Published online by Cambridge University Press:  24 October 2008

R. P. Agarwal
Affiliation:
West Virginia University

Extract

In a recent paper Al-Salam(1) has denned a fractional q-integral operator by the basic integral

(1) Where α ≠ 0, −1, −2, …. Using the series definition of the basic integrals, (1·1) is written as

valid for all α

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Al-Salam, W. A.Some fractional q-integrals and q-derivatives. Proc. Edinburgh Math. Soc. 15 (1966), 135140.Google Scholar
(2)Erdelyi, A.On some functional transformations. Univ. e Politecnico Torino Rend. Sem. Mat. 10 (1951), 217234.Google Scholar
(3)Hahn, W.Beiträge zur theorie der Heineschen Reihen Math. Nachr. 2 (1949), 340–79.CrossRefGoogle Scholar
(4)Hahn, W.Über die höheren Heinschen reihen und eine einheitliche theorie der sogenannten speziellen funktionen. Math. Nachr. 3 (1950), 257294.Google Scholar
(5)Kober, H.On fractional integrals and derivatives. Quart. J. Math. Oxford Ser. 11 (1940), 193–21.CrossRefGoogle Scholar
(6)Slater, L.J. Generalized Hypergeometric Functions. Cambridge University Press (1966).Google Scholar