No CrossRef data available.
Article contents
The Boltzmann-Landau transport equation
I. The first-order Chapman-Enskog approximation
Published online by Cambridge University Press: 24 October 2008
Abstract
The first-order Chapman-Enskog (CE) approximation has been used to linearize the Boltzmann-Landau (BL) equation primarily in the binary collision approximation and a linear integral equation with a non-symmetric kernel is obtained. The solubility conditions are discussed on the basis of conservation theorems. The formal solutions and the transport coefficients have been obtained in a subsequent paper.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 65 , Issue 1 , January 1969 , pp. 177 - 187
- Copyright
- Copyright © Cambridge Philosophical Society 1969
References
REFERENCES
(1)Cohen, E. G. D.Fundamental problems in statistical mechanics (North Holland Publishing Co., Amsterdam, 1962).CrossRefGoogle Scholar
Uhlenbeck, G. E. and Ford, G. W.Lectures in statistical mechanics (American Mathematical Society, 1963).Google Scholar
(2)Kawasaki, K. and Oppenheim, I.Phys. Rev. A 136 (1964), 1519; Phys. Rev. A 139 (1964), 649.CrossRefGoogle Scholar
(9)Grossmann, S. (a) Z. Physik 82 (1964), 24; (b) Nuovo Cimento 37 (1964), 698; (c) Z. Naturforsch. 20a (1965), 861.Google Scholar
(10)Huang, K.Statistical mechanics (John Wiley and Sons, Inc., New York, London, 1963).Google Scholar
(11)Chapman, S. and Cowling, T. G.Mathematical theory of non-uniform gases (Cambridge University Press, 1953).Google Scholar