Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T08:28:55.972Z Has data issue: false hasContentIssue false

Bernstein's theorem for compact, connected Lie groups

Published online by Cambridge University Press:  24 October 2008

Garth I. Gaudry
Affiliation:
School of Mathematical Sciences, Flinders University of South Australia, Bedford Park, S.A. 5042, Australia
Rita Pini
Affiliation:
Dipartimento di Matematica, Università di Milano, 20133 Milano, Italy

Extract

In what follows, G will denote a compact, connected Lie group.

Definition. A complex-valued function f ε L2(G) lies in the space A(G) if it can be written in the form

where

The A(G) norm of f is the infimum of all sums (2) with respect to all decompositions (1).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Butzer, P. L. and Berens, H.. Semigroups of Operators and Approximation (Springer-Verlag, 1967).CrossRefGoogle Scholar
[2]Dieudonné, J.. Eléments d'analyse, tome v. Cahiers scientifiques, fasc. XXXVIII (Gauthier-Villars, 1975).Google Scholar
[3]Edwards, R. E.. Fourier Series: A Modern Introduction, vol. 1 (Springer-Verlag, 1967).Google Scholar
[4]Eymard, P.. L'algèbre de Fourier d'un groupe localement compact. Bull. Soc. Math. France 92 (1964), 184236.Google Scholar
[5]Helgason, S.. Groups and Geometric Analysis (Academic Press, 1984).Google Scholar
[6]Herz, C. S.. Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transforms. J. Math. Mech. 18 (1968), 283323.Google Scholar
[7]Hewitt, E. and Ross, K. A.. Abstract Harmonic Analysis, vol. II (Springer-Verlag, 1971).Google Scholar
[8]Inglis, I. R.. Bernstein's theorem and the Fourier algebra of the Heisenberg group. Boll. Un. Mat. Ital. (6), 2–A (1983), 3946.Google Scholar
[9]Pini, R.. Bernstein's theorem on SU(2). Boll. Un. Mat. Ital. (In the Press.)Google Scholar