Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-20T16:24:40.269Z Has data issue: false hasContentIssue false

Asymptotic representation of weighted L- and L1-minimal polynomials

Published online by Cambridge University Press:  01 January 2008

ANDRÁS KROÓ
Affiliation:
Alfred Renyi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Realtanoda 13-15, H-1053, Hungary e-mail: [email protected]
FRANZ PEHERSTORFER
Affiliation:
Abteilung fur Dynamische Systeme, Und Approximationstheorie, Institute fur Analysis, J.K. Universitat Linz, Altenberger Str. 69, A-4040 Linz, Austria e-mail: [email protected]

Abstract

In 1858 Chebyshev, and some years later his students Korkin and Zolotarev, determined the polynomial which deviates least from zero among all polynomials of degree n with leading coefficient one with respect to the maximum- and the L1-norm, respectively; these are now called the Chebyshev polynomial of first and second kind.

The next natural step which is to find, at least asymptotically, the minimal polynomial with respect to a given weight function has not been settled until today. Indeed, Bernstein gave asymptotics for the minimum deviation of weighted minimal polynomials, Fekete and Walsh found nth root asymptotics and, recently, Lubinsky and Saff provided asymptotics outside [−1, 1]. But the main point of interest: the asymptotic representation of the weighted minimal polynomials on the interval of approximation [−1, 1] remained open. Here we settle this problem with respect to the maximum norm for weight functions whose second derivative is Lipα, α ∈ (0, 1), and with respect to the L1-norm under somewhat stronger differentiability conditions.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Abdulle, A. and Medevikov, A. A.. Second order Chebyshev methods based on orthogonal polynomials. Numer. Math 90 (2001), 118.CrossRefGoogle Scholar
[2]Akhiezer, N. I.. Theory of Approximation, (Ungar, 1956).Google Scholar
[3]Bernstein, S. N.. Lecons sur les proprietes extremales et la meilleure approximation des fonctions analytiques d'une variable reelle (Gauthier-Villars, 1926), reprinted (Chelsea Publ. Co., 1970).Google Scholar
[4]Bernstein, S. N.. Sur les polynomes orthogonaux relatifs a un segment fini. J. Math 9 (1930), 127177, 10 (1931), 219–286.Google Scholar
[5]Bernstein, S. N.. Sur une classe de polynomes orthogonaux. Commun. Soc. Math. de Kharkov IV, (1930), 7993.Google Scholar
[6]Chebyshev, P. L.. Problems of least values connected with approximate representation of functions. In Collected works Vol. 2, Izdat. AN USSR, Moscow-Leningrad, 151235 (in Russian), reprinted by Chelsea Publ. Co.Google Scholar
[7]Cline, A. K.. Lipschitz Conditions on uniform approximation operators. J. Approx. Theor 8 (1973), 160172.CrossRefGoogle Scholar
[8]Dette, H. and Studden, W. J.. The theory of canonical moments with applications In Statistics, Probability and Analysis (J. Wiley, 1997).Google Scholar
[9]Fekete, M. and Walsh, J. L.. On the asymptotic behaviour of polynomials with extremal properties and of their zeros. J. Analyse Math 4 (1954/55), 4987.CrossRefGoogle Scholar
[10]Geronimus, Ya. L.. Polynomials Orthogonal on a Circle and Interval (Pergamon Press, 1960).Google Scholar
[11]Hanke, M. and Hochbruck, M.. A Chebyshev-like semiiterration for inconsistent linear systems. Electron. Trans. Numer. Anal 1 (1993), 89103.Google Scholar
[12]Hurwitz, A. and Courant, R.. Allgemeine Funktionentheorie und Elliptische Funktionen (Springer, 1964).Google Scholar
[13]Karlin, S. and Studden, W.. Tchebycheff Systems (Interscience, 1968).Google Scholar
[14]Krein, M. and Nudelman, A.. The Markov moment problem and extremal problems. Trans. of Math. Monographes 50, AMS (1977).Google Scholar
[15]Kroó, A. and Peherstorfer, F.. Asymptotic representation of Lp-minimal polynomials, 1 ε. Constle Approx 25 (2007), 2939.CrossRefGoogle Scholar
[16]Levin, E. and Lubinsky, D. S.. Orthogonal polynomials for exponential weights CMS Books in Mathematics/Ouvrages de Mathématiques de la SM 4 (Springer-Verlag, 2001), xii+476.Google Scholar
[17]Lubinsky, D. S. and Saff, E. B.. Strong asymptotics for Lp-extremal polynomials (1p) associated with weights on [-1,1]. In Approximation Theory, Tampa, Proc. 1985–1986, Ed. E. Saff, Lecture Notes in Math 1287 (1987), 83104.Google Scholar
[18]Parks, T. W. and Burrus, C. S.. Digital Filter Design (J. Wiley, 1987).Google Scholar
[19]Peherstorfer, F.. On the representation of extremal functions in the L_1-norm. J. Approx. Theor 27 (1979), 6175.CrossRefGoogle Scholar
[20]Peherstorfer, F.. Asymptotic representation of Zolotarev polynomials. J. London Math. Soc. (2) 74 (2006), 143153.CrossRefGoogle Scholar
[21]Szegö, G.. On a problem of the best approximation. Abh. Math. Sem. Univ. Hambur 27 (1964), 193198.CrossRefGoogle Scholar
[22]Szegö, G.. Orthogonal polynomials. Amer. Math. Soc. Colloq. Publ 23 (Amer. Math. Soc., 3rd ed., 1967).Google Scholar
[23]Widom, H.. Extremal polynomials associated with a system of curves in the complex plane. Adv. Math 3 (1969), 127232.CrossRefGoogle Scholar
[24]Widom, H.. Polynomials associated with measures in the complex plane. J. Math. and Mech 16 (1967), 9971013.Google Scholar
[25]Yavor, E.. Extremal problems on moment cones and the Karlin representation theorem. J. d'Analyse Math 39 (1981), 279295.CrossRefGoogle Scholar