Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T14:36:07.277Z Has data issue: false hasContentIssue false

Weakly compact subsets of symmetric operator spaces

Published online by Cambridge University Press:  24 October 2008

Peter G. Dodds
Affiliation:
School of Information Science & Technology, The Flinders University of South Australia, GPO Box 2100, Adelaide 5001, Australia
Theresa K. Dodds
Affiliation:
School of Information Science & Technology, The Flinders University of South Australia, GPO Box 2100, Adelaide 5001, Australia
Ben De Pagter
Affiliation:
Department of Mathematics, Delft University of Technology, Julianalaan 132, NL-2628 BL Delft, The Netherlands

Abstract

Under natural conditions it is shown that the rearrangement invariant hull of a weakly compact subset of a properly symmetric Banach space of measurable operators affiliated with a semi-finite von Neumann algebra is again relatively weakly compact.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Aliprantis, C. D. and Burkinshaw, O.. Positive Operators (Academic Press, 1985).Google Scholar
[2]Akemann, C. A.. The dual space of an operator algebra. Trans. Amer. Math. Soc. 126 (1967), 286302.Google Scholar
[3]Ando, T.. On fundamental properties of a Banach space with a cone. Pacific J. Math. 12 (1962), 11631169.CrossRefGoogle Scholar
[4]Chong, K. M.. Spectral orders, uniform integrability and Lebesgue's dominated convergence theorem. Trans. Amer. Math. Soc. 191 (1974), 395404.Google Scholar
[5]Dodds, P. G., Dodds, T. K. and Pagter, B. de. Non-commutative Banach function spaces. Math. Z. 201 (1989), 583597.CrossRefGoogle Scholar
[6]Dodds, P. G., Dodds, T. K. and Pagter, B. de. A general Markus inequality. Proc. CMA (ANU), Miniconference on Operators in Analysis 24 (1989), 4757.Google Scholar
[7]Dodds, P. G., Dodds, T. K. and Pagter, B. de. Non-commutative Köthe duality. TU Delft (1990).Google Scholar
[8]Diestel, J.. Sequences and Series in Banach Space. Graduate Texts in Math. no. 92 (Springer-Verlag, 1984).CrossRefGoogle Scholar
[9]Dodds, P. G. and Lennard, C. J.. Normality in trace ideals. J. Operator Theory 16 (1986), 127145.Google Scholar
[10]Dunford, N. and Schwartz, J.. Linear Operators, Part I (Wiley-Interscience, 1964).Google Scholar
[11]Fack, T. and Kosaki, H.. Generalized s-numbers of τ-measurable operators. Pacific J. Math. 123 (1986), 269300.CrossRefGoogle Scholar
[12]Fremlin, D. H.. Topological Riesz Spaces and Measure Theory (Cambridge University Press, 1974).CrossRefGoogle Scholar
[13]Fremlin, D. H.. Stable subspaces of L 1+L . Proc. Cambridge Philos. Soc. 64 (1968), 625643.Google Scholar
[14]Garling, D. J. H.. On symmetric sequence spaces. Proc. London Math. Soc. 16 (1966), 85106.CrossRefGoogle Scholar
[15]Garling, D. J. H.. On ideals of operators in Hilbert space. Proc. London Math. Soc. 17 (1967), 115138.Google Scholar
[16]Grothendieck, A.. Topological Vector Spaces (Gordon and Breach, 1973).Google Scholar
[17]Krein, S. G., Petunin, Ju. I. and Semenov, E. M.. Interpolation of linear operators. Translations of Mathematical Monographs. Amer. Math. Soc. 54 (1982).Google Scholar
[18]Luxemburg, W. A. J.. Rearrangement invariant Banach function spaces. Queen's Papers in Pure and Appl. Math. no. 10 (1967), 83144.Google Scholar
[19]Nelson, E.. Notes on non-commutative integration. J. Fund. Anal. 15 (1974), 103116.Google Scholar
[20]Ovčinnikov, V. I.. s-numbers of measurable operators. Funktsional. Anal. i Prilozhen. 4 (1970), 7885.Google Scholar
[21]Ovčinnikov, V. I.. Symmetric spaces of measurable operators. Dokl. Akad. Nauk SSSR 191 (1970), 769771 (Russian)Google Scholar
Ovčinnikov, V. I.. English Translation: Soviet Math. Dokl. 11 (1970), 448451.Google Scholar
[22]Ryff, J. V.. Orbits of L 1-functions under doubly stochastic transformations. Trans. Amer. Math. Soc. 117 (1965), 92100.Google Scholar
[23]Sakai, S.. Topological properties of W*-algebras. Proc. Japan Acad. 33 (1957), 439444.Google Scholar
[24]Sukochew, F.. Construction of non-commutative symmetric spaces. Dokl. Akad. Nauk UzSSR 8 (1986), 46.Google Scholar
[25]Takesaki, M.. Theory of Operator Algebras I (Springer-Verlag, 1979).Google Scholar
[26]Terp, M.. L p-spaces associated with von Neumann algebras. Notes, Copenhagen University, (1981).Google Scholar
[27]Yeadon, F. J.. Ergodic theorems for semifinite von Neumann algebras: II. Math. Proc. Cambridge Philos. Soc. 88 (1980), 135147.CrossRefGoogle Scholar
[28]Zaanen, A. C.. Integration (North-Holland, 1967).Google Scholar