Subsequence principles for vector-valued random variables
Published online by Cambridge University Press: 24 October 2008
Extract
1. Introduction. Révész(8) has shown that if (fn) is a sequence of random variables, bounded in L2, there exists a subsequence (fnk) and a random variable f in L2 such that converges almost surely whenever . Komlós(5) has shown that if (fn) is a sequence of random variables, bounded in L1, then there is a subsequence (A*) with the property that the Cesàro averages of any subsequence converge almost surely. Subsequently Chatterji(2) showed that if (fn) is bounded in LP (where 0 < p ≤ 2) then there is a subsequence (gk) = (fnk) and f in Lp such that
almost surely for every sub-subsequence. All of these results are examples of subsequence principles: a sequence of random variables, satisfying an appropriate moment condition, has a subsequence which satisfies some property enjoyed by sequences of independent identically distributed random variables. Recently Aldous(1), using tightness arguments, has shown that for a general class of properties such a subsequence principle holds: in particular, the results listed above are all special cases of Aldous' principal result.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 86 , Issue 2 , September 1979 , pp. 301 - 312
- Copyright
- Copyright © Cambridge Philosophical Society 1979
References
- 14
- Cited by