Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-02T17:45:01.943Z Has data issue: false hasContentIssue false

Some remarks on a theorem of Parent and generalizing Ogg's conjecture

Published online by Cambridge University Press:  01 September 2009

S. KAMIENNY*
Affiliation:
Department of Mathematics, University of Southern California, 3620 S. Vermont Ave., Los Angeles, CA 90089-2532, U.S.A. e-mail: [email protected]

Abstract

We carry out an Eisenstein prime descent to prove the finiteness of the Mordell-Weil group of the Eisenstein quotients of J1(p) for certain values of p that are relevant to torsion in elliptic curves over cubic fields. We then use this to recover some results of Parent. Our methods suggest a possible generalization of Ogg's conjecture for torsion in elliptic curves over number fields.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Abramovich, D.Formal finiteness and the torsion conjecture on elliptic curves. Astérisque No. 228 (1995), 3, 517.Google Scholar
[2]Conrad, B., Edixhoven, B. and Stein, W.J 1(p) has connected Fibers. Documenta Math. (2003), 331–408.CrossRefGoogle Scholar
[3]Deligne, P. Formes modulaires et representationa ℓ-adiques. Séminaire Bourbaki 68/69 no. 355. Lecture Notes in Mathematics 179. (Springer, 1971), 136–172.Google Scholar
[4]Deligne, P. and Rapoport, M. Schémas de modules de courbes elliptiques, Lecture Notes in Mathematics 349. (Springer, 1973).CrossRefGoogle Scholar
[5]Faltings, G.Diophantine approximation on abelian varieties. Ann Math. 133 (1991), 549576.CrossRefGoogle Scholar
[6]Frey, G. Curves with infinitely many points of fixed degree. Preprint (1992), Institut für Experimentelle Mathematik.Google Scholar
[7]Jeon, D. and Kim, C. On the Arithmetic of Certain Modular Curves. arxiv.org/abs/math/0607611.Google Scholar
[8]Kamienny, S. Harvard Ph.D. Thesis (December 1980).Google Scholar
[9]Kamienny, S.Modular curves and unramified extensions of number fields. Compositio Math. 47 (1982), 223235.Google Scholar
[10]Kamienny, S.On J 1(p) and the Conjecture of Birch and Swinnerton-Dyer. Duke Math. J. 49 (1982), 329340.CrossRefGoogle Scholar
[11]Kamienny, S.Rational points on the modular curves and abelian varieties. J. Reine Angew. Math. 359 (1985), 174187.Google Scholar
[12]Kamienny, S.Some remarks on torsion in elliptic curves. Commun. in Alg., 23 (6) (1995), 21672169.CrossRefGoogle Scholar
[13]Kamienny, S.Torsion points on elliptic curves and q-coefficients of modular forms. Invent. Math. 109 (1992), 221229.CrossRefGoogle Scholar
[14]Kamienny, S. Torsion points on elliptic curves and winding homomorphisms. MSRI preprint series #023–94.Google Scholar
[15]Kamienny, S.Torsion points on elliptic curves over all quadratic fields. Duke Math. J. 53 (1986), 157162.CrossRefGoogle Scholar
[16]Kamienny, S. Torsion points on elliptic curves over fields of higher degree. IMRN No. 6 (1992), 129–133.Google Scholar
[17]Kamienny, S. and Mazur, B.Rational torsion of prime order in elliptic curves over number fields. Astérisque 228 (1995), 81100.Google Scholar
[18]Kato, K.p-adic Hodge theory and values of zeta functions of modular forms. Astérisque 295 (2004), 117290.Google Scholar
[19]Kubert, D.Quadratic relations for generators of units in the modular function field. Math. Ann. 225 (1977), 120.CrossRefGoogle Scholar
[20]Kubert, D. and Lang, S.The index of stickelberger ideals of order 2 and cuspidal class numbers. Math. Ann. 237 (1978), 213232.CrossRefGoogle Scholar
[21]Kubert, D. and Lang, S.Modular Units, (Springer-Verlag, 1981).CrossRefGoogle Scholar
[22]Mazur, B.Modular curves and the eisenstein ideal. Publ. Math. Inst. Hanks Études Sci. 47 (1978), 33186.CrossRefGoogle Scholar
[23]Mazur, B.On the arithmetic of special values of L-functions. Invent. Math. 55 (1979), 207240.CrossRefGoogle Scholar
[24]Mazur, B.Rational isogenies of prime degree. Invent. Math, 44 (1978), 129162.CrossRefGoogle Scholar
[25]Mazur, B. and Tate, J.Points of order 13 on ellitic curves. Invent, Math. 22 (1973), 4149.CrossRefGoogle Scholar
[26]Mazur, B. and Wiles, A.Class fields of abelian extensions of ℚ. Invent. Math. 76 (1984). 179330.CrossRefGoogle Scholar
[27]Merel, L.Bornes pour la torsion des courbes elliptiques sur les corps de nombres. Invent. Math. 124 (1996), 437449.CrossRefGoogle Scholar
[28]Osterlé, J. Torsion des courbes elliptiques sur les corps de nombres, unpublished manuscript.Google Scholar
[29]Ogg, A.Hyperelliptic modular curves. Bull. Soc. Math. France 102 (1974), 449462.CrossRefGoogle Scholar
[30]Ogg, A.Rational points of finite order on elliptic curves. Invent. Math. 12 (1971), 105111.CrossRefGoogle Scholar
[31]Oort, F. and Tate, J.Group schemes of prime order. Ann. Sci. École Norm. Sup. série 4, 3 (1970), 121.Google Scholar
[32]Parent, P.No 17-torsion on elliptic curves over cubic number fields. J. Th. Nombres Bordeux, 15. no. 3 (2003), 831838.CrossRefGoogle Scholar
[33]Parent, P.Torsion des courbes elliptiques sur les corps cubiques. Ann. Inst. Fourier, 50, 3 (2000), 723749.CrossRefGoogle Scholar
[34]Shimura, G.Introduction to the arithmetic theory of automorphic functions. Publ. Math. Soc. Japan, no. 11. (1971).Google Scholar
[35]Stein, W. The modular forms database: tables. http://modular.math.washington.edu/Tables/Google Scholar
[36]Stevens, G.The cuspidal group and special values of L-functions. Trans. Amer. Math. Soc. 291 no. 2 (1985), 519550.Google Scholar
[37]Wiles, A.Modular curves and the class group of ℚ(ζp). Invent. Math 58 (1980), 135.CrossRefGoogle Scholar