Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T18:59:43.699Z Has data issue: false hasContentIssue false

The simplicial extension theorem

Published online by Cambridge University Press:  24 October 2008

B. J. Sanderson
Affiliation:
Mathematics Institute, University of Warwick, Coventry

Extract

Familiarity with the category of simplicial sets and the Milnor realization functor, as in e.g. (5), is assumed. We say f: |Y| → |Z| is realized if f = |g| for some g.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Barrate, M. Simplicial and semisimplicial complexes, Princeton University lecture notes. (1956).Google Scholar
(2)Curtis, E. Simplicial homotopy theory, Aarhus University lecture notes (1967).Google Scholar
(3)Fritsch, R.Characterisierung semisimplizialer Mengen durch Unterteilung und Graphen. Manuscripta Math. 5 (1971), 213227.CrossRefGoogle Scholar
(4)Fritsch, R.Some remarks on S. Weingram: On the triangulation of a semisimplicial complex. Illinois J. Math. 14 (1970), 529535.CrossRefGoogle Scholar
(5)Gabriel, P. & Zisman, M.Calculus of fraction and homotopy theory, Ergebnisse der Mathematik. Band 35 (Springer-Verlag, 1967).CrossRefGoogle Scholar
(6)Kan, D. M.On c.s.s. complexes. Amer. J. Math. 79 (1957), 449476.CrossRefGoogle Scholar
(7)Weingram, S.On the triangulation of the realisation of a semisimplicial complex. Illinois J. Math. 12 (1968), 403413.CrossRefGoogle Scholar
(8)Zeeman, E. C.Relative simplicial approximation. Proc. Cambridge Philos. Soc. 60 (1964), 3943.CrossRefGoogle Scholar