Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T11:19:38.427Z Has data issue: false hasContentIssue false

Pseudo-Abelian varieties

Published online by Cambridge University Press:  24 October 2008

L. Roth
Affiliation:
Imperial College of Science London, S.W. 7

Extract

It is a familiar fact that the Picard surface (or hyperelliptic surface of rank 1) admits a completely transitive permutable continuous group of ∞2 automorphisms. There are, however, other non-scrollar surfaces which possess continuous groups of automorphisms, namely, the elhptic surfaces. Every elliptic surface V2 contains a pencil of birationally equivalent elhptic curves, which are the trajectories of the group in question; it also contains a second, elliptic, pencil of birationally equivalent curves; the intersection number of the two pencils is an important character, known as the determinant of V2. Just as any Picard surface can be mapped on a multiple Picard surface of divisor unity, so V2 can be mapped on a multiple elliptic surface of determinant unity, the branch curve (if any) corresponding to a certain number of trajectories.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1954

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Bagnera, G. and de Franchis, M.Mem. Soc. ital. Sci. nat. (3), 15 (1908), 2Google Scholar
(2)Castelntjovo, G.R.C. Accad. Lincei (5), 14 (1905)1545, 593, 655; Memorie seel (Bologna 1937), p. 473.Google Scholar
(3)Conforto, F.Funzioni abeliane e matrici di Riemann, 1 (Rome, 1942).Google Scholar
(4)Enriques, F.Le superficie algebriche (Bologna, 1949).Google Scholar
(5)Enriques, F.R.C. Mat. Univ. Roma (3), 1 (1934), 7.Google Scholar
(6)Gaeta, F.Ann. Mat. pura appl. (4), 33 (1952), 91.CrossRefGoogle Scholar
(7)Lbpschetz, S.Trans. Amer. math. Soc. 22 (1921), 407.Google Scholar
(8)Roth, L.R.C. Circ. mat. Palermo (2), 2 (1953), 141.CrossRefGoogle Scholar
(9)Roth, L.Proc. Camb. phil. Soc. 49 (1953), 397.CrossRefGoogle Scholar
(10)Roth, L.R.G. Mat. Univ. Roma (5), 12 (1953), 387.Google Scholar
(11)Scorza, G.R.C. Circ. mat. Palmero, 41 (1916), 263.Google Scholar
(12)Segre, B.Mem. Accad. Italia, 5 (1934), 479.Google Scholar
(13)Segre, B.Mem. Acad. roy. Belgique (2), 14 (1936), 1.Google Scholar
(14)Segbe, B.Ann. Mat. pura appl. (4), 35 (1953), 1.Google Scholar
(15)Severi, F.Comment, pontif. Acad. Sci. 6 (1942), 977.Google Scholar
(16)Severi, F.R.C. Accad. Lincei (5), 20 (1911)1, 537.Google Scholar
(17)Severi, F.R.C. Accad. Italia, 3 (1942), 548.Google Scholar
(18)Severi, F.R.C. Mat. Univ. Roma (6), 2 (1941), 250.Google Scholar
(19)Severi, F.Serie, sistemi ďequivalenza, 1 (Rome, 1942).Google Scholar
(20)Todd, J. A.Proc. Lond. math. Soc. (2), 43 (1937), 127.Google Scholar
(21)Todd, J. A.Proc. Lond. math. Soc. (2), 43 (1937), 190.Google Scholar
(22)Todd, J. A.Proc. Lond. math. Soc. (2), 45 (1939), 410.CrossRefGoogle Scholar
(23)Todd, J. A.Proc. Lond. math. Soc. (2), 47 (1941), 81.Google Scholar