No CrossRef data available.
Probability measures with trivial Stam groups
Published online by Cambridge University Press: 24 October 2008
Extract
Let μ be a probability measure on the real line ℝ, x a real number and δ(x) the probability atom concentrated at x. Stam made the interesting observation that either
or else
(ii) δ(x)* μn, are mutually singular for all positive integers n.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 91 , Issue 3 , May 1982 , pp. 477 - 484
- Copyright
- Copyright © Cambridge Philosophical Society 1982
References
REFERENCES
(1)Brown, G.Riesz products and generalized characters. Proc. London Math. Soc. 30 (1975), 209–238.Google Scholar
(2)Brown, G. and Moran, W.On orthogonality of Riesz products. Proc. Cambridge Philos. Soc. 76 (1974), 173–181.CrossRefGoogle Scholar
(3)Brown, G. and Moran, W.Point derivations on M(G). Butt. London Math. Soc. 8 (1976), 57–64.CrossRefGoogle Scholar
(4)Fourt, G.Existence de measures à puissances singulières à toutes leurs translaées. C. R. Acad. Sci. Paris, Sér A-B, 274 (1972), 4648–650.Google Scholar
(5)Heyer, H.Probability measures on locally compact groups (Springer-Verlag, Berlin, Heidelberg, New York, 1977).Google Scholar
(6)Körner, T. W.Some results on Kronecker, Dirichlet, and Helson sets. Ann. Inst. Fourier. Grenoble 20 (1970), 219–324.Google Scholar
(7)Rudin, W.Fourier-Stieltjes transforms of measures on independent sets. Bull. Amer. Math. Soc. 66 (1960), 199–202.CrossRefGoogle Scholar
(9)Sreider, Yu.A. The structure of maximal ideals in rings of measures with convolution. Mat. Sbornik, N.S. 27, 69 (1950), 297–318. (A.M.S. Translation 81.)Google Scholar