Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T19:01:59.577Z Has data issue: false hasContentIssue false

On the nth root set of an element in a connected semisimple Lie group

Published online by Cambridge University Press:  24 October 2008

M. McCrudden
Affiliation:
University of Manchester

Extract

For any group G and xG, and any n ∈ ℕ (the natural numbers) let

i.e. the set of all nth roots of x in G.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Bourbaki, N.Elements of mathematics, Lie groups and Lie algebras, part 1 (Addison Wesley, 1975).Google Scholar
(2)Bourbaki, N.Elements de Mathématique, Groupes et Algèbres de Lie, chapters VII, VIII (Paris, Hermann, 1975).Google Scholar
(3)De Siebenthal, J.Sur les groupes de Lie compact non connexes. Comment. Math. Helv. 31 (1956/1957), 4189.CrossRefGoogle Scholar
(4)Goto, M.On an integer associated with an algebraic group, J. Math. Soc. Japan 29 (1977), 161163.CrossRefGoogle Scholar
(5)Hewitt, E. and Ross, K. A.Abstract harmonic analysis, vol. i (Berlin, Springer-Verlag, 1963).Google Scholar
(6)Hochschild, G.The structure of Lie groups (San Francisco, Holden-Day, 1965).Google Scholar
(7)Lai, H. L.Surjectivity of exponential map on semisimple Lie groups. J. Math. Soc. Japan 29 (1977).Google Scholar
(8)Mostow, G. D.On the fundamental group of a homogeneous space, Ann. of Math., 66, (1957), 249255.CrossRefGoogle Scholar
(9)Steinberg, R.Conjugacy classes in algebraic groups. Lecture Notes in Mathematics, no. 366 (Springer-Verlag, 1974).CrossRefGoogle Scholar
(10)Warner, G.Harmonic analysis on semisimple Lie groups, vol. i (Springer-Verlag, 1972).Google Scholar