No CrossRef data available.
Article contents
On the multiplicative structure of sections of vector bundles on an algebraic curve
Published online by Cambridge University Press: 24 October 2008
Abstract
Here we study (in a more general setting) the following problem. Let C be a smooth projective curve, E and F vector bundles on C and V ⊆ H0 (C, E) (resp. W ⊆ H0 (C, F)) vector spaces generically spanning E (resp. F); find lower bounds for the dimension of the image of the multiplication map V ⊗ W → H0 (C, E ⊗ F) generalizing the case rank(E) = rank(F) = 1.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 120 , Issue 4 , November 1996 , pp. 643 - 645
- Copyright
- Copyright © Cambridge Philosophical Society 1996
References
REFERENCES
[1]Arbarello, E., Cornalba, M., Griffiths, Ph. and Harris, J.. Geometry of Algebraic Curves, I. Grund. der Math. Wiss. 267 (Springer-Verlag, 1985).CrossRefGoogle Scholar
[2]Ballico, E. and Russo, B.. Vector bundles and Brill–Noether–Gieseker theory, I, preprint n. 450 Univ. Trento, 1995.Google Scholar
[3]Ballico, E. and Russo, B.. On the geometry and Brill–Noether theory of spanned vector bundles on curves; in: Higher dimensional complex varieties, Proceedings of the International Conference Trento (1994) (Walter de Gruyter, 1996), pp. 23–38.Google Scholar