Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T11:54:28.443Z Has data issue: false hasContentIssue false

On complete curves in moduli space II

Published online by Cambridge University Press:  24 October 2008

Gabino González Díez
Affiliation:
Departamento de Matemáticas, Universidad Autónoma de Madrid, Spain
William J. Harvey
Affiliation:
Department of Mathematics, King's College London

Extract

Introduction In a companion to this article [4], we gave a construction which furnishes complete curves, inside the moduli variety g of non-singular genus g curves, for each g ≥ 4; it was also shown there that the technique will not work in genus 3.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Barth, W., Peters, C. and Van de Ven, A.. Compact Complex Surfaces (Springer-Verlag, 1984).CrossRefGoogle Scholar
[2]Díaz, S.. A bound on the dimension of complete subvarieties of g. Duke Math. J. 51 (1984), 405408.CrossRefGoogle Scholar
[3]Freitag, E.. Siegelsche Modulfunktionen (Springer-Verlag, 1983).CrossRefGoogle Scholar
[4]González-Díez, G. and Harvey, W. J.. On complete curves in moduli space I. Math. Proc. Cambridge Philos. Soc. 110 (1991), 461466.CrossRefGoogle Scholar
[5]Harris, J.. Recent work on g. In Proceedings of International Congress of Mathematicians, Warsaw (PWN-Polish Scientific Publishers, 1983), pp. 719726.Google Scholar
[6]Igusa, J.. Theta Functions (Springer-Verlag, 1972).CrossRefGoogle Scholar
[7]Jacobson, N.. Lectures in Abstract Algebra, vol. 3 (Van Nostrand, 1964).CrossRefGoogle Scholar
[8]Mumford, D.. Tata Lectures on Theta I. Progress in Math. no. 43 (Birkhäuser, 1984).Google Scholar
[9]Namikawa, Y.. On the canonical holomorphic map from the moduli space of stable curves to the Igusa monoidal transform. Nagoya Math. J. 52 (1973), 197259.CrossRefGoogle Scholar
[10]Rauch, H. E. and Farkas, H.. Theta Functions with Applications to Riemann Surfaces (Williams & Wilkins, 1974).Google Scholar