Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-09T05:54:40.685Z Has data issue: false hasContentIssue false

On Chern Characters and the Structure of the unitary group

Published online by Cambridge University Press:  24 October 2008

J. F. Adams
Affiliation:
Trinity Hall, Cambridge

Extract

The purpose of this paper is twofold. In order to state our first aim, let U denote the ‘infinite’ unitary group, and let BU be a classifying space for U. Then Bott (2),(3) has shown that we propose to investigate the ‘Postnikov system’ of BU.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1961

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Atiyah, M. F., and Hirzebruch, F., Riemann-Roch theorems for differentiable manifolds. Bull. Amer. Math. Soc. 65 (1959), 276–81.CrossRefGoogle Scholar
(2)Bott, R., The stable homotopy of the classical groups. Proc. Nat. Acad. Sci., Wash., 43 (1957), 933–5.CrossRefGoogle ScholarPubMed
(3)Bott, R., The space of loops on a Lie group. Mich. Math. J. 5 (1958), 3561.CrossRefGoogle Scholar
(4)Hirzebruch, F., Neue Topologische Methode in der Algebraischen Geometrie (Berlin, 1956).Google Scholar
(5)Milnor, J., The Steenrod algebra and its dual. Ann. Math. 67 (1958), 150–71.CrossRefGoogle Scholar
(6)Peterson, F. P., Some remarks on Chern classes. Ann. Math. 69 (1959), 414–20.CrossRefGoogle Scholar
(7)Cartan, H., Sur les groupes d'eilenberg-MacLane H(π, n): I, II. Proc. Nat. Acad. Sci., Wash., 40 (1954), 467–71, 704–7.CrossRefGoogle Scholar
(8)Eilenberg, S., Exposé VIII, Séminaire des Topologie Algebrique E.N.S. (Cartan seminar notes), III (19501951).Google Scholar
(9)Serre, J.-P., Homologie singulière des espaces fibrés. Ann. Math. 54 (1951), 425505.CrossRefGoogle Scholar
(10)Serre, J.-P., Cohomologie modulo 2 des complexes d'Eilenberg-MacLane. Comment. Math. Helv. 27 (1953), 198232.CrossRefGoogle Scholar